| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffn |
⊢ ( 𝐹 : 𝑂 ⟶ { 0 , 1 } → 𝐹 Fn 𝑂 ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) → 𝐹 Fn 𝑂 ) |
| 3 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ { 1 } ) ⊆ dom 𝐹 |
| 4 |
|
fdm |
⊢ ( 𝐹 : 𝑂 ⟶ { 0 , 1 } → dom 𝐹 = 𝑂 ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) → dom 𝐹 = 𝑂 ) |
| 6 |
3 5
|
sseqtrid |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) → ( ◡ 𝐹 “ { 1 } ) ⊆ 𝑂 ) |
| 7 |
|
indf |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ ( ◡ 𝐹 “ { 1 } ) ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝐹 “ { 1 } ) ) : 𝑂 ⟶ { 0 , 1 } ) |
| 8 |
6 7
|
syldan |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) → ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝐹 “ { 1 } ) ) : 𝑂 ⟶ { 0 , 1 } ) |
| 9 |
8
|
ffnd |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) → ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝐹 “ { 1 } ) ) Fn 𝑂 ) |
| 10 |
|
simpr |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) → 𝐹 : 𝑂 ⟶ { 0 , 1 } ) |
| 11 |
10
|
ffvelcdmda |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) ∧ 𝑥 ∈ 𝑂 ) → ( 𝐹 ‘ 𝑥 ) ∈ { 0 , 1 } ) |
| 12 |
|
prcom |
⊢ { 0 , 1 } = { 1 , 0 } |
| 13 |
11 12
|
eleqtrdi |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) ∧ 𝑥 ∈ 𝑂 ) → ( 𝐹 ‘ 𝑥 ) ∈ { 1 , 0 } ) |
| 14 |
8
|
ffvelcdmda |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) ∧ 𝑥 ∈ 𝑂 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝐹 “ { 1 } ) ) ‘ 𝑥 ) ∈ { 0 , 1 } ) |
| 15 |
14 12
|
eleqtrdi |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) ∧ 𝑥 ∈ 𝑂 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝐹 “ { 1 } ) ) ‘ 𝑥 ) ∈ { 1 , 0 } ) |
| 16 |
|
simpll |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) ∧ 𝑥 ∈ 𝑂 ) → 𝑂 ∈ 𝑉 ) |
| 17 |
6
|
adantr |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) ∧ 𝑥 ∈ 𝑂 ) → ( ◡ 𝐹 “ { 1 } ) ⊆ 𝑂 ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) ∧ 𝑥 ∈ 𝑂 ) → 𝑥 ∈ 𝑂 ) |
| 19 |
|
ind1a |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ ( ◡ 𝐹 “ { 1 } ) ⊆ 𝑂 ∧ 𝑥 ∈ 𝑂 ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝐹 “ { 1 } ) ) ‘ 𝑥 ) = 1 ↔ 𝑥 ∈ ( ◡ 𝐹 “ { 1 } ) ) ) |
| 20 |
16 17 18 19
|
syl3anc |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) ∧ 𝑥 ∈ 𝑂 ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝐹 “ { 1 } ) ) ‘ 𝑥 ) = 1 ↔ 𝑥 ∈ ( ◡ 𝐹 “ { 1 } ) ) ) |
| 21 |
|
fniniseg |
⊢ ( 𝐹 Fn 𝑂 → ( 𝑥 ∈ ( ◡ 𝐹 “ { 1 } ) ↔ ( 𝑥 ∈ 𝑂 ∧ ( 𝐹 ‘ 𝑥 ) = 1 ) ) ) |
| 22 |
2 21
|
syl |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 1 } ) ↔ ( 𝑥 ∈ 𝑂 ∧ ( 𝐹 ‘ 𝑥 ) = 1 ) ) ) |
| 23 |
22
|
baibd |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) ∧ 𝑥 ∈ 𝑂 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 1 } ) ↔ ( 𝐹 ‘ 𝑥 ) = 1 ) ) |
| 24 |
20 23
|
bitr2d |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) ∧ 𝑥 ∈ 𝑂 ) → ( ( 𝐹 ‘ 𝑥 ) = 1 ↔ ( ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝐹 “ { 1 } ) ) ‘ 𝑥 ) = 1 ) ) |
| 25 |
13 15 24
|
elpreq |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) ∧ 𝑥 ∈ 𝑂 ) → ( 𝐹 ‘ 𝑥 ) = ( ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝐹 “ { 1 } ) ) ‘ 𝑥 ) ) |
| 26 |
2 9 25
|
eqfnfvd |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) → 𝐹 = ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝐹 “ { 1 } ) ) ) |