| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indf1o |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝟭 ‘ 𝑂 ) : 𝒫 𝑂 –1-1-onto→ ( { 0 , 1 } ↑m 𝑂 ) ) |
| 2 |
|
f1of1 |
⊢ ( ( 𝟭 ‘ 𝑂 ) : 𝒫 𝑂 –1-1-onto→ ( { 0 , 1 } ↑m 𝑂 ) → ( 𝟭 ‘ 𝑂 ) : 𝒫 𝑂 –1-1→ ( { 0 , 1 } ↑m 𝑂 ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝟭 ‘ 𝑂 ) : 𝒫 𝑂 –1-1→ ( { 0 , 1 } ↑m 𝑂 ) ) |
| 4 |
|
inss1 |
⊢ ( 𝒫 𝑂 ∩ Fin ) ⊆ 𝒫 𝑂 |
| 5 |
|
f1ores |
⊢ ( ( ( 𝟭 ‘ 𝑂 ) : 𝒫 𝑂 –1-1→ ( { 0 , 1 } ↑m 𝑂 ) ∧ ( 𝒫 𝑂 ∩ Fin ) ⊆ 𝒫 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ↾ ( 𝒫 𝑂 ∩ Fin ) ) : ( 𝒫 𝑂 ∩ Fin ) –1-1-onto→ ( ( 𝟭 ‘ 𝑂 ) “ ( 𝒫 𝑂 ∩ Fin ) ) ) |
| 6 |
3 4 5
|
sylancl |
⊢ ( 𝑂 ∈ 𝑉 → ( ( 𝟭 ‘ 𝑂 ) ↾ ( 𝒫 𝑂 ∩ Fin ) ) : ( 𝒫 𝑂 ∩ Fin ) –1-1-onto→ ( ( 𝟭 ‘ 𝑂 ) “ ( 𝒫 𝑂 ∩ Fin ) ) ) |
| 7 |
|
resres |
⊢ ( ( ( 𝟭 ‘ 𝑂 ) ↾ 𝒫 𝑂 ) ↾ Fin ) = ( ( 𝟭 ‘ 𝑂 ) ↾ ( 𝒫 𝑂 ∩ Fin ) ) |
| 8 |
|
f1ofn |
⊢ ( ( 𝟭 ‘ 𝑂 ) : 𝒫 𝑂 –1-1-onto→ ( { 0 , 1 } ↑m 𝑂 ) → ( 𝟭 ‘ 𝑂 ) Fn 𝒫 𝑂 ) |
| 9 |
|
fnresdm |
⊢ ( ( 𝟭 ‘ 𝑂 ) Fn 𝒫 𝑂 → ( ( 𝟭 ‘ 𝑂 ) ↾ 𝒫 𝑂 ) = ( 𝟭 ‘ 𝑂 ) ) |
| 10 |
1 8 9
|
3syl |
⊢ ( 𝑂 ∈ 𝑉 → ( ( 𝟭 ‘ 𝑂 ) ↾ 𝒫 𝑂 ) = ( 𝟭 ‘ 𝑂 ) ) |
| 11 |
10
|
reseq1d |
⊢ ( 𝑂 ∈ 𝑉 → ( ( ( 𝟭 ‘ 𝑂 ) ↾ 𝒫 𝑂 ) ↾ Fin ) = ( ( 𝟭 ‘ 𝑂 ) ↾ Fin ) ) |
| 12 |
7 11
|
eqtr3id |
⊢ ( 𝑂 ∈ 𝑉 → ( ( 𝟭 ‘ 𝑂 ) ↾ ( 𝒫 𝑂 ∩ Fin ) ) = ( ( 𝟭 ‘ 𝑂 ) ↾ Fin ) ) |
| 13 |
|
eqidd |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝒫 𝑂 ∩ Fin ) = ( 𝒫 𝑂 ∩ Fin ) ) |
| 14 |
|
simpll |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) ∧ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) → 𝑂 ∈ 𝑉 ) |
| 15 |
|
simpr |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) → 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) |
| 16 |
4 15
|
sselid |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) → 𝑎 ∈ 𝒫 𝑂 ) |
| 17 |
16
|
elpwid |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) → 𝑎 ⊆ 𝑂 ) |
| 18 |
|
indf |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) : 𝑂 ⟶ { 0 , 1 } ) |
| 19 |
17 18
|
syldan |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) : 𝑂 ⟶ { 0 , 1 } ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) ∧ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) : 𝑂 ⟶ { 0 , 1 } ) |
| 21 |
|
simpr |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) ∧ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) |
| 22 |
21
|
feq1d |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) ∧ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) : 𝑂 ⟶ { 0 , 1 } ↔ 𝑔 : 𝑂 ⟶ { 0 , 1 } ) ) |
| 23 |
20 22
|
mpbid |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) ∧ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) → 𝑔 : 𝑂 ⟶ { 0 , 1 } ) |
| 24 |
|
prex |
⊢ { 0 , 1 } ∈ V |
| 25 |
|
elmapg |
⊢ ( ( { 0 , 1 } ∈ V ∧ 𝑂 ∈ 𝑉 ) → ( 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ↔ 𝑔 : 𝑂 ⟶ { 0 , 1 } ) ) |
| 26 |
24 25
|
mpan |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ↔ 𝑔 : 𝑂 ⟶ { 0 , 1 } ) ) |
| 27 |
26
|
biimpar |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑔 : 𝑂 ⟶ { 0 , 1 } ) → 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ) |
| 28 |
14 23 27
|
syl2anc |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) ∧ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) → 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ) |
| 29 |
21
|
cnveqd |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) ∧ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) → ◡ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = ◡ 𝑔 ) |
| 30 |
29
|
imaeq1d |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) ∧ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) → ( ◡ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) “ { 1 } ) = ( ◡ 𝑔 “ { 1 } ) ) |
| 31 |
|
indpi1 |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ⊆ 𝑂 ) → ( ◡ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) “ { 1 } ) = 𝑎 ) |
| 32 |
17 31
|
syldan |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) → ( ◡ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) “ { 1 } ) = 𝑎 ) |
| 33 |
|
inss2 |
⊢ ( 𝒫 𝑂 ∩ Fin ) ⊆ Fin |
| 34 |
33 15
|
sselid |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) → 𝑎 ∈ Fin ) |
| 35 |
32 34
|
eqeltrd |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) → ( ◡ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) “ { 1 } ) ∈ Fin ) |
| 36 |
35
|
adantr |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) ∧ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) → ( ◡ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) “ { 1 } ) ∈ Fin ) |
| 37 |
30 36
|
eqeltrrd |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) ∧ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) → ( ◡ 𝑔 “ { 1 } ) ∈ Fin ) |
| 38 |
28 37
|
jca |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ) ∧ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) → ( 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∧ ( ◡ 𝑔 “ { 1 } ) ∈ Fin ) ) |
| 39 |
38
|
rexlimdva2 |
⊢ ( 𝑂 ∈ 𝑉 → ( ∃ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 → ( 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∧ ( ◡ 𝑔 “ { 1 } ) ∈ Fin ) ) ) |
| 40 |
|
cnvimass |
⊢ ( ◡ 𝑔 “ { 1 } ) ⊆ dom 𝑔 |
| 41 |
26
|
biimpa |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ) → 𝑔 : 𝑂 ⟶ { 0 , 1 } ) |
| 42 |
41
|
fdmd |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ) → dom 𝑔 = 𝑂 ) |
| 43 |
42
|
adantrr |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ ( 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∧ ( ◡ 𝑔 “ { 1 } ) ∈ Fin ) ) → dom 𝑔 = 𝑂 ) |
| 44 |
40 43
|
sseqtrid |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ ( 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∧ ( ◡ 𝑔 “ { 1 } ) ∈ Fin ) ) → ( ◡ 𝑔 “ { 1 } ) ⊆ 𝑂 ) |
| 45 |
|
simprr |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ ( 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∧ ( ◡ 𝑔 “ { 1 } ) ∈ Fin ) ) → ( ◡ 𝑔 “ { 1 } ) ∈ Fin ) |
| 46 |
|
elfpw |
⊢ ( ( ◡ 𝑔 “ { 1 } ) ∈ ( 𝒫 𝑂 ∩ Fin ) ↔ ( ( ◡ 𝑔 “ { 1 } ) ⊆ 𝑂 ∧ ( ◡ 𝑔 “ { 1 } ) ∈ Fin ) ) |
| 47 |
44 45 46
|
sylanbrc |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ ( 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∧ ( ◡ 𝑔 “ { 1 } ) ∈ Fin ) ) → ( ◡ 𝑔 “ { 1 } ) ∈ ( 𝒫 𝑂 ∩ Fin ) ) |
| 48 |
|
indpreima |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑔 : 𝑂 ⟶ { 0 , 1 } ) → 𝑔 = ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝑔 “ { 1 } ) ) ) |
| 49 |
48
|
eqcomd |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑔 : 𝑂 ⟶ { 0 , 1 } ) → ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝑔 “ { 1 } ) ) = 𝑔 ) |
| 50 |
41 49
|
syldan |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ) → ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝑔 “ { 1 } ) ) = 𝑔 ) |
| 51 |
50
|
adantrr |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ ( 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∧ ( ◡ 𝑔 “ { 1 } ) ∈ Fin ) ) → ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝑔 “ { 1 } ) ) = 𝑔 ) |
| 52 |
|
fveqeq2 |
⊢ ( 𝑎 = ( ◡ 𝑔 “ { 1 } ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ↔ ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝑔 “ { 1 } ) ) = 𝑔 ) ) |
| 53 |
52
|
rspcev |
⊢ ( ( ( ◡ 𝑔 “ { 1 } ) ∈ ( 𝒫 𝑂 ∩ Fin ) ∧ ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝑔 “ { 1 } ) ) = 𝑔 ) → ∃ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) |
| 54 |
47 51 53
|
syl2anc |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ ( 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∧ ( ◡ 𝑔 “ { 1 } ) ∈ Fin ) ) → ∃ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) |
| 55 |
54
|
ex |
⊢ ( 𝑂 ∈ 𝑉 → ( ( 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∧ ( ◡ 𝑔 “ { 1 } ) ∈ Fin ) → ∃ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) ) |
| 56 |
39 55
|
impbid |
⊢ ( 𝑂 ∈ 𝑉 → ( ∃ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ↔ ( 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∧ ( ◡ 𝑔 “ { 1 } ) ∈ Fin ) ) ) |
| 57 |
1 8
|
syl |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝟭 ‘ 𝑂 ) Fn 𝒫 𝑂 ) |
| 58 |
|
fvelimab |
⊢ ( ( ( 𝟭 ‘ 𝑂 ) Fn 𝒫 𝑂 ∧ ( 𝒫 𝑂 ∩ Fin ) ⊆ 𝒫 𝑂 ) → ( 𝑔 ∈ ( ( 𝟭 ‘ 𝑂 ) “ ( 𝒫 𝑂 ∩ Fin ) ) ↔ ∃ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) ) |
| 59 |
57 4 58
|
sylancl |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑔 ∈ ( ( 𝟭 ‘ 𝑂 ) “ ( 𝒫 𝑂 ∩ Fin ) ) ↔ ∃ 𝑎 ∈ ( 𝒫 𝑂 ∩ Fin ) ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑎 ) = 𝑔 ) ) |
| 60 |
|
cnveq |
⊢ ( 𝑓 = 𝑔 → ◡ 𝑓 = ◡ 𝑔 ) |
| 61 |
60
|
imaeq1d |
⊢ ( 𝑓 = 𝑔 → ( ◡ 𝑓 “ { 1 } ) = ( ◡ 𝑔 “ { 1 } ) ) |
| 62 |
61
|
eleq1d |
⊢ ( 𝑓 = 𝑔 → ( ( ◡ 𝑓 “ { 1 } ) ∈ Fin ↔ ( ◡ 𝑔 “ { 1 } ) ∈ Fin ) ) |
| 63 |
62
|
elrab |
⊢ ( 𝑔 ∈ { 𝑓 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } ↔ ( 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∧ ( ◡ 𝑔 “ { 1 } ) ∈ Fin ) ) |
| 64 |
63
|
a1i |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑔 ∈ { 𝑓 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } ↔ ( 𝑔 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∧ ( ◡ 𝑔 “ { 1 } ) ∈ Fin ) ) ) |
| 65 |
56 59 64
|
3bitr4d |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑔 ∈ ( ( 𝟭 ‘ 𝑂 ) “ ( 𝒫 𝑂 ∩ Fin ) ) ↔ 𝑔 ∈ { 𝑓 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } ) ) |
| 66 |
65
|
eqrdv |
⊢ ( 𝑂 ∈ 𝑉 → ( ( 𝟭 ‘ 𝑂 ) “ ( 𝒫 𝑂 ∩ Fin ) ) = { 𝑓 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } ) |
| 67 |
12 13 66
|
f1oeq123d |
⊢ ( 𝑂 ∈ 𝑉 → ( ( ( 𝟭 ‘ 𝑂 ) ↾ ( 𝒫 𝑂 ∩ Fin ) ) : ( 𝒫 𝑂 ∩ Fin ) –1-1-onto→ ( ( 𝟭 ‘ 𝑂 ) “ ( 𝒫 𝑂 ∩ Fin ) ) ↔ ( ( 𝟭 ‘ 𝑂 ) ↾ Fin ) : ( 𝒫 𝑂 ∩ Fin ) –1-1-onto→ { 𝑓 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } ) ) |
| 68 |
6 67
|
mpbid |
⊢ ( 𝑂 ∈ 𝑉 → ( ( 𝟭 ‘ 𝑂 ) ↾ Fin ) : ( 𝒫 𝑂 ∩ Fin ) –1-1-onto→ { 𝑓 ∈ ( { 0 , 1 } ↑m 𝑂 ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } ) |