| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indf1o |
|
| 2 |
|
f1of1 |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
inss1 |
|
| 5 |
|
f1ores |
|
| 6 |
3 4 5
|
sylancl |
|
| 7 |
|
resres |
|
| 8 |
|
f1ofn |
|
| 9 |
|
fnresdm |
|
| 10 |
1 8 9
|
3syl |
|
| 11 |
10
|
reseq1d |
|
| 12 |
7 11
|
eqtr3id |
|
| 13 |
|
eqidd |
|
| 14 |
|
simpll |
|
| 15 |
|
simpr |
|
| 16 |
4 15
|
sselid |
|
| 17 |
16
|
elpwid |
|
| 18 |
|
indf |
|
| 19 |
17 18
|
syldan |
|
| 20 |
19
|
adantr |
|
| 21 |
|
simpr |
|
| 22 |
21
|
feq1d |
|
| 23 |
20 22
|
mpbid |
|
| 24 |
|
prex |
|
| 25 |
|
elmapg |
|
| 26 |
24 25
|
mpan |
|
| 27 |
26
|
biimpar |
|
| 28 |
14 23 27
|
syl2anc |
|
| 29 |
21
|
cnveqd |
|
| 30 |
29
|
imaeq1d |
|
| 31 |
|
indpi1 |
|
| 32 |
17 31
|
syldan |
|
| 33 |
|
inss2 |
|
| 34 |
33 15
|
sselid |
|
| 35 |
32 34
|
eqeltrd |
|
| 36 |
35
|
adantr |
|
| 37 |
30 36
|
eqeltrrd |
|
| 38 |
28 37
|
jca |
|
| 39 |
38
|
rexlimdva2 |
|
| 40 |
|
cnvimass |
|
| 41 |
26
|
biimpa |
|
| 42 |
41
|
fdmd |
|
| 43 |
42
|
adantrr |
|
| 44 |
40 43
|
sseqtrid |
|
| 45 |
|
simprr |
|
| 46 |
|
elfpw |
|
| 47 |
44 45 46
|
sylanbrc |
|
| 48 |
|
indpreima |
|
| 49 |
48
|
eqcomd |
|
| 50 |
41 49
|
syldan |
|
| 51 |
50
|
adantrr |
|
| 52 |
|
fveqeq2 |
|
| 53 |
52
|
rspcev |
|
| 54 |
47 51 53
|
syl2anc |
|
| 55 |
54
|
ex |
|
| 56 |
39 55
|
impbid |
|
| 57 |
1 8
|
syl |
|
| 58 |
|
fvelimab |
|
| 59 |
57 4 58
|
sylancl |
|
| 60 |
|
cnveq |
|
| 61 |
60
|
imaeq1d |
|
| 62 |
61
|
eleq1d |
|
| 63 |
62
|
elrab |
|
| 64 |
63
|
a1i |
|
| 65 |
56 59 64
|
3bitr4d |
|
| 66 |
65
|
eqrdv |
|
| 67 |
12 13 66
|
f1oeq123d |
|
| 68 |
6 67
|
mpbid |
|