Metamath Proof Explorer


Theorem indsupp

Description: The support of the indicator function. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Assertion indsupp O V A O 𝟙 O A supp 0 = A

Proof

Step Hyp Ref Expression
1 simpl O V A O O V
2 c0ex 0 V
3 2 a1i O V A O 0 V
4 indf O V A O 𝟙 O A : O 0 1
5 fsuppeq O V 0 V 𝟙 O A : O 0 1 𝟙 O A supp 0 = 𝟙 O A -1 0 1 0
6 5 imp O V 0 V 𝟙 O A : O 0 1 𝟙 O A supp 0 = 𝟙 O A -1 0 1 0
7 1 3 4 6 syl21anc O V A O 𝟙 O A supp 0 = 𝟙 O A -1 0 1 0
8 prcom 0 1 = 1 0
9 8 difeq1i 0 1 0 = 1 0 0
10 ax-1ne0 1 0
11 difprsn2 1 0 1 0 0 = 1
12 10 11 ax-mp 1 0 0 = 1
13 9 12 eqtri 0 1 0 = 1
14 13 a1i O V A O 0 1 0 = 1
15 14 imaeq2d O V A O 𝟙 O A -1 0 1 0 = 𝟙 O A -1 1
16 indpi1 O V A O 𝟙 O A -1 1 = A
17 7 15 16 3eqtrd O V A O 𝟙 O A supp 0 = A