Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Real and complex functions
Indicator Functions
indsupp
Next ⟩
Decimal expansion
Metamath Proof Explorer
Ascii
Unicode
Theorem
indsupp
Description:
The support of the indicator function.
(Contributed by
Thierry Arnoux
, 13-Oct-2025)
Ref
Expression
Assertion
indsupp
⊢
O
∈
V
∧
A
⊆
O
→
𝟙
O
⁡
A
supp
0
=
A
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢
O
∈
V
∧
A
⊆
O
→
O
∈
V
2
c0ex
⊢
0
∈
V
3
2
a1i
⊢
O
∈
V
∧
A
⊆
O
→
0
∈
V
4
indf
⊢
O
∈
V
∧
A
⊆
O
→
𝟙
O
⁡
A
:
O
⟶
0
1
5
fsuppeq
⊢
O
∈
V
∧
0
∈
V
→
𝟙
O
⁡
A
:
O
⟶
0
1
→
𝟙
O
⁡
A
supp
0
=
𝟙
O
⁡
A
-1
0
1
∖
0
6
5
imp
⊢
O
∈
V
∧
0
∈
V
∧
𝟙
O
⁡
A
:
O
⟶
0
1
→
𝟙
O
⁡
A
supp
0
=
𝟙
O
⁡
A
-1
0
1
∖
0
7
1
3
4
6
syl21anc
⊢
O
∈
V
∧
A
⊆
O
→
𝟙
O
⁡
A
supp
0
=
𝟙
O
⁡
A
-1
0
1
∖
0
8
prcom
⊢
0
1
=
1
0
9
8
difeq1i
⊢
0
1
∖
0
=
1
0
∖
0
10
ax-1ne0
⊢
1
≠
0
11
difprsn2
⊢
1
≠
0
→
1
0
∖
0
=
1
12
10
11
ax-mp
⊢
1
0
∖
0
=
1
13
9
12
eqtri
⊢
0
1
∖
0
=
1
14
13
a1i
⊢
O
∈
V
∧
A
⊆
O
→
0
1
∖
0
=
1
15
14
imaeq2d
⊢
O
∈
V
∧
A
⊆
O
→
𝟙
O
⁡
A
-1
0
1
∖
0
=
𝟙
O
⁡
A
-1
1
16
indpi1
⊢
O
∈
V
∧
A
⊆
O
→
𝟙
O
⁡
A
-1
1
=
A
17
7
15
16
3eqtrd
⊢
O
∈
V
∧
A
⊆
O
→
𝟙
O
⁡
A
supp
0
=
A