| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( O e. V /\ A C_ O ) -> O e. V ) |
| 2 |
|
c0ex |
|- 0 e. _V |
| 3 |
2
|
a1i |
|- ( ( O e. V /\ A C_ O ) -> 0 e. _V ) |
| 4 |
|
indf |
|- ( ( O e. V /\ A C_ O ) -> ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } ) |
| 5 |
|
fsuppeq |
|- ( ( O e. V /\ 0 e. _V ) -> ( ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } -> ( ( ( _Ind ` O ) ` A ) supp 0 ) = ( `' ( ( _Ind ` O ) ` A ) " ( { 0 , 1 } \ { 0 } ) ) ) ) |
| 6 |
5
|
imp |
|- ( ( ( O e. V /\ 0 e. _V ) /\ ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } ) -> ( ( ( _Ind ` O ) ` A ) supp 0 ) = ( `' ( ( _Ind ` O ) ` A ) " ( { 0 , 1 } \ { 0 } ) ) ) |
| 7 |
1 3 4 6
|
syl21anc |
|- ( ( O e. V /\ A C_ O ) -> ( ( ( _Ind ` O ) ` A ) supp 0 ) = ( `' ( ( _Ind ` O ) ` A ) " ( { 0 , 1 } \ { 0 } ) ) ) |
| 8 |
|
prcom |
|- { 0 , 1 } = { 1 , 0 } |
| 9 |
8
|
difeq1i |
|- ( { 0 , 1 } \ { 0 } ) = ( { 1 , 0 } \ { 0 } ) |
| 10 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 11 |
|
difprsn2 |
|- ( 1 =/= 0 -> ( { 1 , 0 } \ { 0 } ) = { 1 } ) |
| 12 |
10 11
|
ax-mp |
|- ( { 1 , 0 } \ { 0 } ) = { 1 } |
| 13 |
9 12
|
eqtri |
|- ( { 0 , 1 } \ { 0 } ) = { 1 } |
| 14 |
13
|
a1i |
|- ( ( O e. V /\ A C_ O ) -> ( { 0 , 1 } \ { 0 } ) = { 1 } ) |
| 15 |
14
|
imaeq2d |
|- ( ( O e. V /\ A C_ O ) -> ( `' ( ( _Ind ` O ) ` A ) " ( { 0 , 1 } \ { 0 } ) ) = ( `' ( ( _Ind ` O ) ` A ) " { 1 } ) ) |
| 16 |
|
indpi1 |
|- ( ( O e. V /\ A C_ O ) -> ( `' ( ( _Ind ` O ) ` A ) " { 1 } ) = A ) |
| 17 |
7 15 16
|
3eqtrd |
|- ( ( O e. V /\ A C_ O ) -> ( ( ( _Ind ` O ) ` A ) supp 0 ) = A ) |