| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → 𝑂 ∈ 𝑉 ) |
| 2 |
|
c0ex |
⊢ 0 ∈ V |
| 3 |
2
|
a1i |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → 0 ∈ V ) |
| 4 |
|
indf |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) : 𝑂 ⟶ { 0 , 1 } ) |
| 5 |
|
fsuppeq |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 0 ∈ V ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) : 𝑂 ⟶ { 0 , 1 } → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) supp 0 ) = ( ◡ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) “ ( { 0 , 1 } ∖ { 0 } ) ) ) ) |
| 6 |
5
|
imp |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 0 ∈ V ) ∧ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) : 𝑂 ⟶ { 0 , 1 } ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) supp 0 ) = ( ◡ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) “ ( { 0 , 1 } ∖ { 0 } ) ) ) |
| 7 |
1 3 4 6
|
syl21anc |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) supp 0 ) = ( ◡ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) “ ( { 0 , 1 } ∖ { 0 } ) ) ) |
| 8 |
|
prcom |
⊢ { 0 , 1 } = { 1 , 0 } |
| 9 |
8
|
difeq1i |
⊢ ( { 0 , 1 } ∖ { 0 } ) = ( { 1 , 0 } ∖ { 0 } ) |
| 10 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 11 |
|
difprsn2 |
⊢ ( 1 ≠ 0 → ( { 1 , 0 } ∖ { 0 } ) = { 1 } ) |
| 12 |
10 11
|
ax-mp |
⊢ ( { 1 , 0 } ∖ { 0 } ) = { 1 } |
| 13 |
9 12
|
eqtri |
⊢ ( { 0 , 1 } ∖ { 0 } ) = { 1 } |
| 14 |
13
|
a1i |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ( { 0 , 1 } ∖ { 0 } ) = { 1 } ) |
| 15 |
14
|
imaeq2d |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ( ◡ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) “ ( { 0 , 1 } ∖ { 0 } ) ) = ( ◡ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) “ { 1 } ) ) |
| 16 |
|
indpi1 |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ( ◡ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) “ { 1 } ) = 𝐴 ) |
| 17 |
7 15 16
|
3eqtrd |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) supp 0 ) = 𝐴 ) |