| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodindf.1 |  | 
						
							| 2 |  | prodindf.2 |  | 
						
							| 3 |  | prodindf.3 |  | 
						
							| 4 |  | prodindf.4 |  | 
						
							| 5 |  | 2fveq3 |  | 
						
							| 6 |  | indf |  | 
						
							| 7 | 1 3 6 | syl2anc |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 | 4 | ffvelcdmda |  | 
						
							| 10 | 8 9 | ffvelcdmd |  | 
						
							| 11 | 5 2 10 | fprodex01 |  | 
						
							| 12 |  | 2fveq3 |  | 
						
							| 13 | 12 | eqeq1d |  | 
						
							| 14 | 13 | cbvralvw |  | 
						
							| 15 | 14 | a1i |  | 
						
							| 16 | 15 | ifbid |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 17 | rnmptss |  | 
						
							| 19 |  | nfv |  | 
						
							| 20 |  | nfmpt1 |  | 
						
							| 21 | 20 | nfrn |  | 
						
							| 22 |  | nfcv |  | 
						
							| 23 | 21 22 | nfss |  | 
						
							| 24 | 19 23 | nfan |  | 
						
							| 25 |  | simplr |  | 
						
							| 26 | 4 | feqmptd |  | 
						
							| 27 |  | eqidd |  | 
						
							| 28 | 26 27 | fveq12d |  | 
						
							| 29 | 28 | ralrimivw |  | 
						
							| 30 | 29 | r19.21bi |  | 
						
							| 31 | 4 | ffnd |  | 
						
							| 32 | 26 | fneq1d |  | 
						
							| 33 | 31 32 | mpbid |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 |  | fnfvelrn |  | 
						
							| 37 | 34 35 36 | syl2anc |  | 
						
							| 38 | 30 37 | eqeltrd |  | 
						
							| 39 | 38 | adantlr |  | 
						
							| 40 | 25 39 | sseldd |  | 
						
							| 41 | 40 | ex |  | 
						
							| 42 | 24 41 | ralrimi |  | 
						
							| 43 | 42 | ex |  | 
						
							| 44 | 18 43 | impbid2 |  | 
						
							| 45 | 1 | adantr |  | 
						
							| 46 | 3 | adantr |  | 
						
							| 47 |  | ind1a |  | 
						
							| 48 | 45 46 9 47 | syl3anc |  | 
						
							| 49 | 48 | ralbidva |  | 
						
							| 50 | 26 | rneqd |  | 
						
							| 51 | 50 | sseq1d |  | 
						
							| 52 | 44 49 51 | 3bitr4d |  | 
						
							| 53 | 52 | ifbid |  | 
						
							| 54 | 11 16 53 | 3eqtrd |  |