Metamath Proof Explorer


Theorem prodindf

Description: The product of indicators is one if and only if all values are in the set. (Contributed by Thierry Arnoux, 11-Dec-2021)

Ref Expression
Hypotheses prodindf.1 φOV
prodindf.2 φAFin
prodindf.3 φBO
prodindf.4 φF:AO
Assertion prodindf φkA𝟙OBFk=ifranFB10

Proof

Step Hyp Ref Expression
1 prodindf.1 φOV
2 prodindf.2 φAFin
3 prodindf.3 φBO
4 prodindf.4 φF:AO
5 2fveq3 k=l𝟙OBFk=𝟙OBFl
6 indf OVBO𝟙OB:O01
7 1 3 6 syl2anc φ𝟙OB:O01
8 7 adantr φkA𝟙OB:O01
9 4 ffvelcdmda φkAFkO
10 8 9 ffvelcdmd φkA𝟙OBFk01
11 5 2 10 fprodex01 φkA𝟙OBFk=iflA𝟙OBFl=110
12 2fveq3 l=k𝟙OBFl=𝟙OBFk
13 12 eqeq1d l=k𝟙OBFl=1𝟙OBFk=1
14 13 cbvralvw lA𝟙OBFl=1kA𝟙OBFk=1
15 14 a1i φlA𝟙OBFl=1kA𝟙OBFk=1
16 15 ifbid φiflA𝟙OBFl=110=ifkA𝟙OBFk=110
17 eqid kAFk=kAFk
18 17 rnmptss kAFkBrankAFkB
19 nfv kφ
20 nfmpt1 _kkAFk
21 20 nfrn _krankAFk
22 nfcv _kB
23 21 22 nfss krankAFkB
24 19 23 nfan kφrankAFkB
25 simplr φrankAFkBkArankAFkB
26 4 feqmptd φF=kAFk
27 eqidd φk=k
28 26 27 fveq12d φFk=kAFkk
29 28 ralrimivw φkAFk=kAFkk
30 29 r19.21bi φkAFk=kAFkk
31 4 ffnd φFFnA
32 26 fneq1d φFFnAkAFkFnA
33 31 32 mpbid φkAFkFnA
34 33 adantr φkAkAFkFnA
35 simpr φkAkA
36 fnfvelrn kAFkFnAkAkAFkkrankAFk
37 34 35 36 syl2anc φkAkAFkkrankAFk
38 30 37 eqeltrd φkAFkrankAFk
39 38 adantlr φrankAFkBkAFkrankAFk
40 25 39 sseldd φrankAFkBkAFkB
41 40 ex φrankAFkBkAFkB
42 24 41 ralrimi φrankAFkBkAFkB
43 42 ex φrankAFkBkAFkB
44 18 43 impbid2 φkAFkBrankAFkB
45 1 adantr φkAOV
46 3 adantr φkABO
47 ind1a OVBOFkO𝟙OBFk=1FkB
48 45 46 9 47 syl3anc φkA𝟙OBFk=1FkB
49 48 ralbidva φkA𝟙OBFk=1kAFkB
50 26 rneqd φranF=rankAFk
51 50 sseq1d φranFBrankAFkB
52 44 49 51 3bitr4d φkA𝟙OBFk=1ranFB
53 52 ifbid φifkA𝟙OBFk=110=ifranFB10
54 11 16 53 3eqtrd φkA𝟙OBFk=ifranFB10