| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodex01.1 |
⊢ ( 𝑘 = 𝑙 → 𝐵 = 𝐶 ) |
| 2 |
|
fprodex01.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 3 |
|
fprodex01.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ { 0 , 1 } ) |
| 4 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) → ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) |
| 5 |
1
|
eqeq1d |
⊢ ( 𝑘 = 𝑙 → ( 𝐵 = 1 ↔ 𝐶 = 1 ) ) |
| 6 |
5
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 = 1 ↔ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) |
| 7 |
4 6
|
sylibr |
⊢ ( ( 𝜑 ∧ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) → ∀ 𝑘 ∈ 𝐴 𝐵 = 1 ) |
| 8 |
7
|
prodeq2d |
⊢ ( ( 𝜑 ∧ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ 𝐴 1 ) |
| 9 |
|
prod1 |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 0 ) ∨ 𝐴 ∈ Fin ) → ∏ 𝑘 ∈ 𝐴 1 = 1 ) |
| 10 |
9
|
olcs |
⊢ ( 𝐴 ∈ Fin → ∏ 𝑘 ∈ 𝐴 1 = 1 ) |
| 11 |
2 10
|
syl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 1 = 1 ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) → ∏ 𝑘 ∈ 𝐴 1 = 1 ) |
| 13 |
8 12
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) → 1 = ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 14 |
|
nfv |
⊢ Ⅎ 𝑙 𝜑 |
| 15 |
|
nfra1 |
⊢ Ⅎ 𝑙 ∀ 𝑙 ∈ 𝐴 𝐶 = 1 |
| 16 |
15
|
nfn |
⊢ Ⅎ 𝑙 ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 |
| 17 |
14 16
|
nfan |
⊢ Ⅎ 𝑙 ( 𝜑 ∧ ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) |
| 18 |
|
nfv |
⊢ Ⅎ 𝑙 ∏ 𝑘 ∈ 𝐴 𝐵 = 0 |
| 19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) → 𝐴 ∈ Fin ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) ∧ 𝑙 ∈ 𝐴 ) ∧ 𝐶 = 0 ) → 𝐴 ∈ Fin ) |
| 21 |
|
pr01ssre |
⊢ { 0 , 1 } ⊆ ℝ |
| 22 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 23 |
21 22
|
sstri |
⊢ { 0 , 1 } ⊆ ℂ |
| 24 |
23 3
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 25 |
24
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 26 |
25
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) ∧ 𝑙 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 27 |
26
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) ∧ 𝑙 ∈ 𝐴 ) ∧ 𝐶 = 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 28 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) ∧ 𝑙 ∈ 𝐴 ) ∧ 𝐶 = 0 ) → 𝑙 ∈ 𝐴 ) |
| 29 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) ∧ 𝑙 ∈ 𝐴 ) ∧ 𝐶 = 0 ) → 𝐶 = 0 ) |
| 30 |
1 20 27 28 29
|
fprodeq02 |
⊢ ( ( ( ( 𝜑 ∧ ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) ∧ 𝑙 ∈ 𝐴 ) ∧ 𝐶 = 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 31 |
|
rexnal |
⊢ ( ∃ 𝑙 ∈ 𝐴 ¬ 𝐶 = 1 ↔ ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) |
| 32 |
31
|
biimpri |
⊢ ( ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 → ∃ 𝑙 ∈ 𝐴 ¬ 𝐶 = 1 ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) → ∃ 𝑙 ∈ 𝐴 ¬ 𝐶 = 1 ) |
| 34 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ { 0 , 1 } ) |
| 35 |
1
|
eleq1d |
⊢ ( 𝑘 = 𝑙 → ( 𝐵 ∈ { 0 , 1 } ↔ 𝐶 ∈ { 0 , 1 } ) ) |
| 36 |
35
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ { 0 , 1 } ↔ ∀ 𝑙 ∈ 𝐴 𝐶 ∈ { 0 , 1 } ) |
| 37 |
34 36
|
sylib |
⊢ ( 𝜑 → ∀ 𝑙 ∈ 𝐴 𝐶 ∈ { 0 , 1 } ) |
| 38 |
37
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐴 ) → 𝐶 ∈ { 0 , 1 } ) |
| 39 |
|
c0ex |
⊢ 0 ∈ V |
| 40 |
|
1ex |
⊢ 1 ∈ V |
| 41 |
39 40
|
elpr2 |
⊢ ( 𝐶 ∈ { 0 , 1 } ↔ ( 𝐶 = 0 ∨ 𝐶 = 1 ) ) |
| 42 |
38 41
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐴 ) → ( 𝐶 = 0 ∨ 𝐶 = 1 ) ) |
| 43 |
42
|
orcomd |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐴 ) → ( 𝐶 = 1 ∨ 𝐶 = 0 ) ) |
| 44 |
43
|
ord |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐴 ) → ( ¬ 𝐶 = 1 → 𝐶 = 0 ) ) |
| 45 |
44
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑙 ∈ 𝐴 ¬ 𝐶 = 1 → ∃ 𝑙 ∈ 𝐴 𝐶 = 0 ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) → ( ∃ 𝑙 ∈ 𝐴 ¬ 𝐶 = 1 → ∃ 𝑙 ∈ 𝐴 𝐶 = 0 ) ) |
| 47 |
33 46
|
mpd |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) → ∃ 𝑙 ∈ 𝐴 𝐶 = 0 ) |
| 48 |
17 18 30 47
|
r19.29af2 |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
| 49 |
48
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑙 ∈ 𝐴 𝐶 = 1 ) → 0 = ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 50 |
13 49
|
ifeqda |
⊢ ( 𝜑 → if ( ∀ 𝑙 ∈ 𝐴 𝐶 = 1 , 1 , 0 ) = ∏ 𝑘 ∈ 𝐴 𝐵 ) |
| 51 |
50
|
eqcomd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = if ( ∀ 𝑙 ∈ 𝐴 𝐶 = 1 , 1 , 0 ) ) |