| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodpr.1 |
⊢ ( 𝑘 = 𝐴 → 𝐷 = 𝐸 ) |
| 2 |
|
prodpr.2 |
⊢ ( 𝑘 = 𝐵 → 𝐷 = 𝐹 ) |
| 3 |
|
prodpr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
prodpr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 5 |
|
prodpr.e |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 6 |
|
prodpr.f |
⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
| 7 |
|
prodpr.3 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 8 |
|
disjsn2 |
⊢ ( 𝐴 ≠ 𝐵 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
| 10 |
|
df-pr |
⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) ) |
| 12 |
|
prfi |
⊢ { 𝐴 , 𝐵 } ∈ Fin |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ Fin ) |
| 14 |
|
vex |
⊢ 𝑘 ∈ V |
| 15 |
14
|
elpr |
⊢ ( 𝑘 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ) ) |
| 16 |
1
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝐷 = 𝐸 ) |
| 17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝐸 ∈ ℂ ) |
| 18 |
16 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝐷 ∈ ℂ ) |
| 19 |
2
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐷 = 𝐹 ) |
| 20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐹 ∈ ℂ ) |
| 21 |
19 20
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐷 ∈ ℂ ) |
| 22 |
18 21
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ) ) → 𝐷 ∈ ℂ ) |
| 23 |
15 22
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 , 𝐵 } ) → 𝐷 ∈ ℂ ) |
| 24 |
9 11 13 23
|
fprodsplit |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 = ( ∏ 𝑘 ∈ { 𝐴 } 𝐷 · ∏ 𝑘 ∈ { 𝐵 } 𝐷 ) ) |
| 25 |
1
|
prodsn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐸 ∈ ℂ ) → ∏ 𝑘 ∈ { 𝐴 } 𝐷 = 𝐸 ) |
| 26 |
3 5 25
|
syl2anc |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 𝐴 } 𝐷 = 𝐸 ) |
| 27 |
2
|
prodsn |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐹 ∈ ℂ ) → ∏ 𝑘 ∈ { 𝐵 } 𝐷 = 𝐹 ) |
| 28 |
4 6 27
|
syl2anc |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 𝐵 } 𝐷 = 𝐹 ) |
| 29 |
26 28
|
oveq12d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ { 𝐴 } 𝐷 · ∏ 𝑘 ∈ { 𝐵 } 𝐷 ) = ( 𝐸 · 𝐹 ) ) |
| 30 |
24 29
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 = ( 𝐸 · 𝐹 ) ) |