| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodpr.1 |
⊢ ( 𝑘 = 𝐴 → 𝐷 = 𝐸 ) |
| 2 |
|
prodpr.2 |
⊢ ( 𝑘 = 𝐵 → 𝐷 = 𝐹 ) |
| 3 |
|
prodpr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
prodpr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 5 |
|
prodpr.e |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 6 |
|
prodpr.f |
⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
| 7 |
|
prodpr.3 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 8 |
|
prodtp.1 |
⊢ ( 𝑘 = 𝐶 → 𝐷 = 𝐺 ) |
| 9 |
|
prodtp.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
| 10 |
|
prodtp.g |
⊢ ( 𝜑 → 𝐺 ∈ ℂ ) |
| 11 |
|
prodtp.2 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐶 ) |
| 12 |
|
prodtp.3 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
| 13 |
|
disjprsn |
⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ) |
| 14 |
11 12 13
|
syl2anc |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ) |
| 15 |
|
df-tp |
⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) |
| 17 |
|
tpfi |
⊢ { 𝐴 , 𝐵 , 𝐶 } ∈ Fin |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 , 𝐶 } ∈ Fin ) |
| 19 |
|
vex |
⊢ 𝑘 ∈ V |
| 20 |
19
|
eltp |
⊢ ( 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶 ) ) |
| 21 |
1
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝐷 = 𝐸 ) |
| 22 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝐸 ∈ ℂ ) |
| 23 |
21 22
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝐷 ∈ ℂ ) |
| 24 |
23
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶 ) ) ∧ 𝑘 = 𝐴 ) → 𝐷 ∈ ℂ ) |
| 25 |
2
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐷 = 𝐹 ) |
| 26 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐹 ∈ ℂ ) |
| 27 |
25 26
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐷 ∈ ℂ ) |
| 28 |
27
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶 ) ) ∧ 𝑘 = 𝐵 ) → 𝐷 ∈ ℂ ) |
| 29 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐶 ) → 𝐷 = 𝐺 ) |
| 30 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐶 ) → 𝐺 ∈ ℂ ) |
| 31 |
29 30
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐶 ) → 𝐷 ∈ ℂ ) |
| 32 |
31
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶 ) ) ∧ 𝑘 = 𝐶 ) → 𝐷 ∈ ℂ ) |
| 33 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶 ) ) → ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶 ) ) |
| 34 |
24 28 32 33
|
mpjao3dan |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ∨ 𝑘 = 𝐶 ) ) → 𝐷 ∈ ℂ ) |
| 35 |
20 34
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → 𝐷 ∈ ℂ ) |
| 36 |
14 16 18 35
|
fprodsplit |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 = ( ∏ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 · ∏ 𝑘 ∈ { 𝐶 } 𝐷 ) ) |
| 37 |
1 2 3 4 5 6 7
|
prodpr |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 = ( 𝐸 · 𝐹 ) ) |
| 38 |
8
|
prodsn |
⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐺 ∈ ℂ ) → ∏ 𝑘 ∈ { 𝐶 } 𝐷 = 𝐺 ) |
| 39 |
9 10 38
|
syl2anc |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 𝐶 } 𝐷 = 𝐺 ) |
| 40 |
37 39
|
oveq12d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐷 · ∏ 𝑘 ∈ { 𝐶 } 𝐷 ) = ( ( 𝐸 · 𝐹 ) · 𝐺 ) ) |
| 41 |
36 40
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝐷 = ( ( 𝐸 · 𝐹 ) · 𝐺 ) ) |