| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prodpr.1 |
|
| 2 |
|
prodpr.2 |
|
| 3 |
|
prodpr.a |
|
| 4 |
|
prodpr.b |
|
| 5 |
|
prodpr.e |
|
| 6 |
|
prodpr.f |
|
| 7 |
|
prodpr.3 |
|
| 8 |
|
prodtp.1 |
|
| 9 |
|
prodtp.c |
|
| 10 |
|
prodtp.g |
|
| 11 |
|
prodtp.2 |
|
| 12 |
|
prodtp.3 |
|
| 13 |
|
disjprsn |
|
| 14 |
11 12 13
|
syl2anc |
|
| 15 |
|
df-tp |
|
| 16 |
15
|
a1i |
|
| 17 |
|
tpfi |
|
| 18 |
17
|
a1i |
|
| 19 |
|
vex |
|
| 20 |
19
|
eltp |
|
| 21 |
1
|
adantl |
|
| 22 |
5
|
adantr |
|
| 23 |
21 22
|
eqeltrd |
|
| 24 |
23
|
adantlr |
|
| 25 |
2
|
adantl |
|
| 26 |
6
|
adantr |
|
| 27 |
25 26
|
eqeltrd |
|
| 28 |
27
|
adantlr |
|
| 29 |
8
|
adantl |
|
| 30 |
10
|
adantr |
|
| 31 |
29 30
|
eqeltrd |
|
| 32 |
31
|
adantlr |
|
| 33 |
|
simpr |
|
| 34 |
24 28 32 33
|
mpjao3dan |
|
| 35 |
20 34
|
sylan2b |
|
| 36 |
14 16 18 35
|
fprodsplit |
|
| 37 |
1 2 3 4 5 6 7
|
prodpr |
|
| 38 |
8
|
prodsn |
|
| 39 |
9 10 38
|
syl2anc |
|
| 40 |
37 39
|
oveq12d |
|
| 41 |
36 40
|
eqtrd |
|