| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reprval.a |
|
| 2 |
|
reprval.m |
|
| 3 |
|
reprval.s |
|
| 4 |
|
hashreprin.b |
|
| 5 |
|
hashreprin.1 |
|
| 6 |
5 2 3 4
|
reprfi |
|
| 7 |
|
inss2 |
|
| 8 |
7
|
a1i |
|
| 9 |
5 2 3 8
|
reprss |
|
| 10 |
6 9
|
ssfid |
|
| 11 |
|
1cnd |
|
| 12 |
|
fsumconst |
|
| 13 |
10 11 12
|
syl2anc |
|
| 14 |
11
|
ralrimivw |
|
| 15 |
6
|
olcd |
|
| 16 |
|
sumss2 |
|
| 17 |
9 14 15 16
|
syl21anc |
|
| 18 |
5 2 3
|
reprinrn |
|
| 19 |
|
incom |
|
| 20 |
19
|
oveq1i |
|
| 21 |
20
|
eleq2i |
|
| 22 |
21
|
bibi1i |
|
| 23 |
22
|
imbi2i |
|
| 24 |
18 23
|
mpbi |
|
| 25 |
24
|
baibd |
|
| 26 |
25
|
ifbid |
|
| 27 |
|
nnex |
|
| 28 |
27
|
a1i |
|
| 29 |
28
|
ralrimivw |
|
| 30 |
29
|
r19.21bi |
|
| 31 |
|
fzofi |
|
| 32 |
31
|
a1i |
|
| 33 |
1
|
adantr |
|
| 34 |
5
|
adantr |
|
| 35 |
2
|
adantr |
|
| 36 |
3
|
adantr |
|
| 37 |
|
simpr |
|
| 38 |
34 35 36 37
|
reprf |
|
| 39 |
38 34
|
fssd |
|
| 40 |
30 32 33 39
|
prodindf |
|
| 41 |
26 40
|
eqtr4d |
|
| 42 |
41
|
sumeq2dv |
|
| 43 |
17 42
|
eqtrd |
|
| 44 |
|
hashcl |
|
| 45 |
10 44
|
syl |
|
| 46 |
45
|
nn0cnd |
|
| 47 |
46
|
mulridd |
|
| 48 |
13 43 47
|
3eqtr3rd |
|