Metamath Proof Explorer


Theorem reprss

Description: Representations with terms in a subset. (Contributed by Thierry Arnoux, 11-Dec-2021)

Ref Expression
Hypotheses reprval.a φA
reprval.m φM
reprval.s φS0
reprss.1 φBA
Assertion reprss φBreprSMAreprSM

Proof

Step Hyp Ref Expression
1 reprval.a φA
2 reprval.m φM
3 reprval.s φS0
4 reprss.1 φBA
5 nnex V
6 5 a1i φV
7 6 1 ssexd φAV
8 mapss AVBAB0..^SA0..^S
9 7 4 8 syl2anc φB0..^SA0..^S
10 9 sselda φcB0..^ScA0..^S
11 10 adantrr φcB0..^Sa0..^Sca=McA0..^S
12 11 rabss3d φcB0..^S|a0..^Sca=McA0..^S|a0..^Sca=M
13 4 1 sstrd φB
14 13 2 3 reprval φBreprSM=cB0..^S|a0..^Sca=M
15 1 2 3 reprval φAreprSM=cA0..^S|a0..^Sca=M
16 12 14 15 3sstr4d φBreprSMAreprSM