| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reprgt.n |
|
| 2 |
|
reprgt.a |
|
| 3 |
|
reprgt.m |
|
| 4 |
|
reprgt.s |
|
| 5 |
|
reprgt.1 |
|
| 6 |
|
fz1ssnn |
|
| 7 |
2 6
|
sstrdi |
|
| 8 |
7 3 4
|
reprval |
|
| 9 |
|
fzofi |
|
| 10 |
9
|
a1i |
|
| 11 |
|
nnssre |
|
| 12 |
7 11
|
sstrdi |
|
| 13 |
12
|
ralrimivw |
|
| 14 |
13
|
ralrimivw |
|
| 15 |
14
|
r19.21bi |
|
| 16 |
15
|
r19.21bi |
|
| 17 |
|
ovex |
|
| 18 |
17
|
a1i |
|
| 19 |
18 2
|
ssexd |
|
| 20 |
19
|
adantr |
|
| 21 |
9
|
elexi |
|
| 22 |
21
|
a1i |
|
| 23 |
|
simpr |
|
| 24 |
|
elmapg |
|
| 25 |
24
|
biimpa |
|
| 26 |
20 22 23 25
|
syl21anc |
|
| 27 |
26
|
adantr |
|
| 28 |
|
simpr |
|
| 29 |
27 28
|
ffvelcdmd |
|
| 30 |
16 29
|
sseldd |
|
| 31 |
10 30
|
fsumrecl |
|
| 32 |
4
|
nn0red |
|
| 33 |
32
|
adantr |
|
| 34 |
1
|
nn0red |
|
| 35 |
34
|
adantr |
|
| 36 |
33 35
|
remulcld |
|
| 37 |
3
|
zred |
|
| 38 |
37
|
adantr |
|
| 39 |
34
|
ad2antrr |
|
| 40 |
2
|
ad2antrr |
|
| 41 |
40 29
|
sseldd |
|
| 42 |
|
elfzle2 |
|
| 43 |
41 42
|
syl |
|
| 44 |
10 30 39 43
|
fsumle |
|
| 45 |
34
|
recnd |
|
| 46 |
|
fsumconst |
|
| 47 |
9 45 46
|
sylancr |
|
| 48 |
|
hashfzo0 |
|
| 49 |
4 48
|
syl |
|
| 50 |
49
|
oveq1d |
|
| 51 |
47 50
|
eqtrd |
|
| 52 |
51
|
adantr |
|
| 53 |
44 52
|
breqtrd |
|
| 54 |
5
|
adantr |
|
| 55 |
31 36 38 53 54
|
lelttrd |
|
| 56 |
31 55
|
ltned |
|
| 57 |
56
|
neneqd |
|
| 58 |
57
|
ralrimiva |
|
| 59 |
|
rabeq0 |
|
| 60 |
58 59
|
sylibr |
|
| 61 |
8 60
|
eqtrd |
|