| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reprinfz1.n |
|
| 2 |
|
reprinfz1.s |
|
| 3 |
|
reprinfz1.a |
|
| 4 |
|
nnex |
|
| 5 |
4
|
a1i |
|
| 6 |
5 3
|
ssexd |
|
| 7 |
|
ovex |
|
| 8 |
|
elmapg |
|
| 9 |
6 7 8
|
sylancl |
|
| 10 |
9
|
biimpa |
|
| 11 |
10
|
adantr |
|
| 12 |
|
elmapfn |
|
| 13 |
12
|
ad2antlr |
|
| 14 |
|
simplr |
|
| 15 |
1
|
nn0red |
|
| 16 |
15
|
ad3antrrr |
|
| 17 |
3
|
ad3antrrr |
|
| 18 |
|
simpllr |
|
| 19 |
9
|
ad3antrrr |
|
| 20 |
18 19
|
mpbid |
|
| 21 |
|
simplr |
|
| 22 |
20 21
|
ffvelcdmd |
|
| 23 |
17 22
|
sseldd |
|
| 24 |
23
|
nnred |
|
| 25 |
|
fzofi |
|
| 26 |
25
|
a1i |
|
| 27 |
3
|
ad4antr |
|
| 28 |
20
|
ffvelcdmda |
|
| 29 |
27 28
|
sseldd |
|
| 30 |
29
|
nnred |
|
| 31 |
26 30
|
fsumrecl |
|
| 32 |
|
simpr |
|
| 33 |
1
|
nn0zd |
|
| 34 |
33
|
ad3antrrr |
|
| 35 |
|
fznn |
|
| 36 |
34 35
|
syl |
|
| 37 |
23
|
biantrurd |
|
| 38 |
36 37
|
bitr4d |
|
| 39 |
38
|
notbid |
|
| 40 |
32 39
|
mpbid |
|
| 41 |
16 24
|
ltnled |
|
| 42 |
40 41
|
mpbird |
|
| 43 |
24
|
recnd |
|
| 44 |
|
fveq2 |
|
| 45 |
44
|
sumsn |
|
| 46 |
21 43 45
|
syl2anc |
|
| 47 |
29
|
nnnn0d |
|
| 48 |
|
nn0ge0 |
|
| 49 |
47 48
|
syl |
|
| 50 |
|
snssi |
|
| 51 |
50
|
ad2antlr |
|
| 52 |
26 30 49 51
|
fsumless |
|
| 53 |
46 52
|
eqbrtrrd |
|
| 54 |
16 24 31 42 53
|
ltletrd |
|
| 55 |
16 54
|
ltned |
|
| 56 |
55
|
necomd |
|
| 57 |
56
|
r19.29an |
|
| 58 |
57
|
neneqd |
|
| 59 |
58
|
adantlr |
|
| 60 |
14 59
|
pm2.65da |
|
| 61 |
|
dfral2 |
|
| 62 |
60 61
|
sylibr |
|
| 63 |
44
|
eleq1d |
|
| 64 |
63
|
cbvralvw |
|
| 65 |
62 64
|
sylibr |
|
| 66 |
13 65
|
jca |
|
| 67 |
|
ffnfv |
|
| 68 |
66 67
|
sylibr |
|
| 69 |
11 68
|
jca |
|
| 70 |
|
fin |
|
| 71 |
69 70
|
sylibr |
|
| 72 |
|
ovex |
|
| 73 |
72
|
inex2 |
|
| 74 |
73 7
|
elmap |
|
| 75 |
71 74
|
sylibr |
|
| 76 |
75
|
anasss |
|
| 77 |
76
|
rabss3d |
|
| 78 |
3 33 2
|
reprval |
|
| 79 |
|
inss1 |
|
| 80 |
79
|
a1i |
|
| 81 |
80 3
|
sstrd |
|
| 82 |
81 33 2
|
reprval |
|
| 83 |
77 78 82
|
3sstr4d |
|
| 84 |
3 33 2 80
|
reprss |
|
| 85 |
83 84
|
eqssd |
|