Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Number Theory
Representations of a number as sums of integers
reprfi2
Next ⟩
reprfz1
Metamath Proof Explorer
Ascii
Unicode
Theorem
reprfi2
Description:
Corollary of
reprinfz1
.
(Contributed by
Thierry Arnoux
, 15-Dec-2021)
Ref
Expression
Hypotheses
reprinfz1.n
⊢
φ
→
N
∈
ℕ
0
reprinfz1.s
⊢
φ
→
S
∈
ℕ
0
reprinfz1.a
⊢
φ
→
A
⊆
ℕ
Assertion
reprfi2
⊢
φ
→
A
repr
⁡
S
N
∈
Fin
Proof
Step
Hyp
Ref
Expression
1
reprinfz1.n
⊢
φ
→
N
∈
ℕ
0
2
reprinfz1.s
⊢
φ
→
S
∈
ℕ
0
3
reprinfz1.a
⊢
φ
→
A
⊆
ℕ
4
1
2
3
reprinfz1
⊢
φ
→
A
repr
⁡
S
N
=
A
∩
1
…
N
repr
⁡
S
N
5
inss2
⊢
A
∩
1
…
N
⊆
1
…
N
6
fz1ssnn
⊢
1
…
N
⊆
ℕ
7
5
6
sstri
⊢
A
∩
1
…
N
⊆
ℕ
8
7
a1i
⊢
φ
→
A
∩
1
…
N
⊆
ℕ
9
1
nn0zd
⊢
φ
→
N
∈
ℤ
10
fzfi
⊢
1
…
N
∈
Fin
11
10
a1i
⊢
φ
→
1
…
N
∈
Fin
12
5
a1i
⊢
φ
→
A
∩
1
…
N
⊆
1
…
N
13
11
12
ssfid
⊢
φ
→
A
∩
1
…
N
∈
Fin
14
8
9
2
13
reprfi
⊢
φ
→
A
∩
1
…
N
repr
⁡
S
N
∈
Fin
15
4
14
eqeltrd
⊢
φ
→
A
repr
⁡
S
N
∈
Fin