Metamath Proof Explorer


Theorem reprfi2

Description: Corollary of reprinfz1 . (Contributed by Thierry Arnoux, 15-Dec-2021)

Ref Expression
Hypotheses reprinfz1.n φN0
reprinfz1.s φS0
reprinfz1.a φA
Assertion reprfi2 φAreprSNFin

Proof

Step Hyp Ref Expression
1 reprinfz1.n φN0
2 reprinfz1.s φS0
3 reprinfz1.a φA
4 1 2 3 reprinfz1 φAreprSN=A1NreprSN
5 inss2 A1N1N
6 fz1ssnn 1N
7 5 6 sstri A1N
8 7 a1i φA1N
9 1 nn0zd φN
10 fzfi 1NFin
11 10 a1i φ1NFin
12 5 a1i φA1N1N
13 11 12 ssfid φA1NFin
14 8 9 2 13 reprfi φA1NreprSNFin
15 4 14 eqeltrd φAreprSNFin