Metamath Proof Explorer


Theorem reprfi2

Description: Corollary of reprinfz1 . (Contributed by Thierry Arnoux, 15-Dec-2021)

Ref Expression
Hypotheses reprinfz1.n φ N 0
reprinfz1.s φ S 0
reprinfz1.a φ A
Assertion reprfi2 φ A repr S N Fin

Proof

Step Hyp Ref Expression
1 reprinfz1.n φ N 0
2 reprinfz1.s φ S 0
3 reprinfz1.a φ A
4 1 2 3 reprinfz1 φ A repr S N = A 1 N repr S N
5 inss2 A 1 N 1 N
6 fz1ssnn 1 N
7 5 6 sstri A 1 N
8 7 a1i φ A 1 N
9 1 nn0zd φ N
10 fzfi 1 N Fin
11 10 a1i φ 1 N Fin
12 5 a1i φ A 1 N 1 N
13 11 12 ssfid φ A 1 N Fin
14 8 9 2 13 reprfi φ A 1 N repr S N Fin
15 4 14 eqeltrd φ A repr S N Fin