| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reprinfz1.n |
|- ( ph -> N e. NN0 ) |
| 2 |
|
reprinfz1.s |
|- ( ph -> S e. NN0 ) |
| 3 |
|
reprinfz1.a |
|- ( ph -> A C_ NN ) |
| 4 |
1 2 3
|
reprinfz1 |
|- ( ph -> ( A ( repr ` S ) N ) = ( ( A i^i ( 1 ... N ) ) ( repr ` S ) N ) ) |
| 5 |
|
inss2 |
|- ( A i^i ( 1 ... N ) ) C_ ( 1 ... N ) |
| 6 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
| 7 |
5 6
|
sstri |
|- ( A i^i ( 1 ... N ) ) C_ NN |
| 8 |
7
|
a1i |
|- ( ph -> ( A i^i ( 1 ... N ) ) C_ NN ) |
| 9 |
1
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 10 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 11 |
10
|
a1i |
|- ( ph -> ( 1 ... N ) e. Fin ) |
| 12 |
5
|
a1i |
|- ( ph -> ( A i^i ( 1 ... N ) ) C_ ( 1 ... N ) ) |
| 13 |
11 12
|
ssfid |
|- ( ph -> ( A i^i ( 1 ... N ) ) e. Fin ) |
| 14 |
8 9 2 13
|
reprfi |
|- ( ph -> ( ( A i^i ( 1 ... N ) ) ( repr ` S ) N ) e. Fin ) |
| 15 |
4 14
|
eqeltrd |
|- ( ph -> ( A ( repr ` S ) N ) e. Fin ) |