Metamath Proof Explorer


Theorem reprfi

Description: Bounded representations are finite sets. (Contributed by Thierry Arnoux, 7-Dec-2021)

Ref Expression
Hypotheses reprval.a φA
reprval.m φM
reprval.s φS0
reprfi.1 φAFin
Assertion reprfi φAreprSMFin

Proof

Step Hyp Ref Expression
1 reprval.a φA
2 reprval.m φM
3 reprval.s φS0
4 reprfi.1 φAFin
5 1 2 3 reprval φAreprSM=cA0..^S|a0..^Sca=M
6 fzofi 0..^SFin
7 mapfi AFin0..^SFinA0..^SFin
8 4 6 7 sylancl φA0..^SFin
9 rabfi A0..^SFincA0..^S|a0..^Sca=MFin
10 8 9 syl φcA0..^S|a0..^Sca=MFin
11 5 10 eqeltrd φAreprSMFin