Metamath Proof Explorer


Theorem breprexplemb

Description: Lemma for breprexp (closure). (Contributed by Thierry Arnoux, 7-Dec-2021)

Ref Expression
Hypotheses breprexp.n φN0
breprexp.s φS0
breprexp.z φZ
breprexp.h φL:0..^S
breprexplemb.x φX0..^S
breprexplemb.y φY
Assertion breprexplemb φLXY

Proof

Step Hyp Ref Expression
1 breprexp.n φN0
2 breprexp.s φS0
3 breprexp.z φZ
4 breprexp.h φL:0..^S
5 breprexplemb.x φX0..^S
6 breprexplemb.y φY
7 4 5 ffvelcdmd φLX
8 cnex V
9 nnex V
10 8 9 elmap LXLX:
11 7 10 sylib φLX:
12 11 6 ffvelcdmd φLXY