Description: Lemma for breprexp (closure). (Contributed by Thierry Arnoux, 7-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | breprexp.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| breprexp.s | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) | ||
| breprexp.z | ⊢ ( 𝜑 → 𝑍 ∈ ℂ ) | ||
| breprexp.h | ⊢ ( 𝜑 → 𝐿 : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) ) | ||
| breprexplemb.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ 𝑆 ) ) | ||
| breprexplemb.y | ⊢ ( 𝜑 → 𝑌 ∈ ℕ ) | ||
| Assertion | breprexplemb | ⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝑋 ) ‘ 𝑌 ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breprexp.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 2 | breprexp.s | ⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) | |
| 3 | breprexp.z | ⊢ ( 𝜑 → 𝑍 ∈ ℂ ) | |
| 4 | breprexp.h | ⊢ ( 𝜑 → 𝐿 : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) ) | |
| 5 | breprexplemb.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ 𝑆 ) ) | |
| 6 | breprexplemb.y | ⊢ ( 𝜑 → 𝑌 ∈ ℕ ) | |
| 7 | 4 5 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐿 ‘ 𝑋 ) ∈ ( ℂ ↑m ℕ ) ) |
| 8 | cnex | ⊢ ℂ ∈ V | |
| 9 | nnex | ⊢ ℕ ∈ V | |
| 10 | 8 9 | elmap | ⊢ ( ( 𝐿 ‘ 𝑋 ) ∈ ( ℂ ↑m ℕ ) ↔ ( 𝐿 ‘ 𝑋 ) : ℕ ⟶ ℂ ) |
| 11 | 7 10 | sylib | ⊢ ( 𝜑 → ( 𝐿 ‘ 𝑋 ) : ℕ ⟶ ℂ ) |
| 12 | 11 6 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝐿 ‘ 𝑋 ) ‘ 𝑌 ) ∈ ℂ ) |