| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 2 |
1
|
sseli |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) |
| 3 |
2
|
a1i |
⊢ ( 𝑀 ∈ ℤ → ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) ) |
| 4 |
3
|
anim1d |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥 ) → ( 𝑥 ∈ ℝ ∧ 𝑀 ≤ 𝑥 ) ) ) |
| 5 |
|
eluz1 |
⊢ ( 𝑀 ∈ ℤ → ( 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥 ) ) ) |
| 6 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
| 7 |
|
elicopnf |
⊢ ( 𝑀 ∈ ℝ → ( 𝑥 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑀 ≤ 𝑥 ) ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝑀 ∈ ℤ → ( 𝑥 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑀 ≤ 𝑥 ) ) ) |
| 9 |
4 5 8
|
3imtr4d |
⊢ ( 𝑀 ∈ ℤ → ( 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑥 ∈ ( 𝑀 [,) +∞ ) ) ) |
| 10 |
9
|
ssrdv |
⊢ ( 𝑀 ∈ ℤ → ( ℤ≥ ‘ 𝑀 ) ⊆ ( 𝑀 [,) +∞ ) ) |