| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zssre |
|- ZZ C_ RR |
| 2 |
1
|
sseli |
|- ( x e. ZZ -> x e. RR ) |
| 3 |
2
|
a1i |
|- ( M e. ZZ -> ( x e. ZZ -> x e. RR ) ) |
| 4 |
3
|
anim1d |
|- ( M e. ZZ -> ( ( x e. ZZ /\ M <_ x ) -> ( x e. RR /\ M <_ x ) ) ) |
| 5 |
|
eluz1 |
|- ( M e. ZZ -> ( x e. ( ZZ>= ` M ) <-> ( x e. ZZ /\ M <_ x ) ) ) |
| 6 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
| 7 |
|
elicopnf |
|- ( M e. RR -> ( x e. ( M [,) +oo ) <-> ( x e. RR /\ M <_ x ) ) ) |
| 8 |
6 7
|
syl |
|- ( M e. ZZ -> ( x e. ( M [,) +oo ) <-> ( x e. RR /\ M <_ x ) ) ) |
| 9 |
4 5 8
|
3imtr4d |
|- ( M e. ZZ -> ( x e. ( ZZ>= ` M ) -> x e. ( M [,) +oo ) ) ) |
| 10 |
9
|
ssrdv |
|- ( M e. ZZ -> ( ZZ>= ` M ) C_ ( M [,) +oo ) ) |