Metamath Proof Explorer


Theorem iccssico

Description: Condition for a closed interval to be a subset of a half-open interval. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Assertion iccssico ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐴𝐶𝐷 < 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-ico [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )
2 df-icc [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧𝑦 ) } )
3 xrletr ( ( 𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ* ) → ( ( 𝐴𝐶𝐶𝑤 ) → 𝐴𝑤 ) )
4 xrlelttr ( ( 𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ* ) → ( ( 𝑤𝐷𝐷 < 𝐵 ) → 𝑤 < 𝐵 ) )
5 1 2 3 4 ixxss12 ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐴𝐶𝐷 < 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,) 𝐵 ) )