Description: Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | df-icc | ⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cicc | ⊢ [,] | |
1 | vx | ⊢ 𝑥 | |
2 | cxr | ⊢ ℝ* | |
3 | vy | ⊢ 𝑦 | |
4 | vz | ⊢ 𝑧 | |
5 | 1 | cv | ⊢ 𝑥 |
6 | cle | ⊢ ≤ | |
7 | 4 | cv | ⊢ 𝑧 |
8 | 5 7 6 | wbr | ⊢ 𝑥 ≤ 𝑧 |
9 | 3 | cv | ⊢ 𝑦 |
10 | 7 9 6 | wbr | ⊢ 𝑧 ≤ 𝑦 |
11 | 8 10 | wa | ⊢ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) |
12 | 11 4 2 | crab | ⊢ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } |
13 | 1 3 2 2 12 | cmpo | ⊢ ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
14 | 0 13 | wceq | ⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |