Metamath Proof Explorer


Theorem climaddc2

Description: Limit of a constant C added to each term of a sequence. (Contributed by NM, 24-Sep-2005) (Revised by Mario Carneiro, 3-Feb-2014)

Ref Expression
Hypotheses climadd.1 𝑍 = ( ℤ𝑀 )
climadd.2 ( 𝜑𝑀 ∈ ℤ )
climadd.4 ( 𝜑𝐹𝐴 )
climaddc1.5 ( 𝜑𝐶 ∈ ℂ )
climaddc1.6 ( 𝜑𝐺𝑊 )
climaddc1.7 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
climaddc2.h ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) = ( 𝐶 + ( 𝐹𝑘 ) ) )
Assertion climaddc2 ( 𝜑𝐺 ⇝ ( 𝐶 + 𝐴 ) )

Proof

Step Hyp Ref Expression
1 climadd.1 𝑍 = ( ℤ𝑀 )
2 climadd.2 ( 𝜑𝑀 ∈ ℤ )
3 climadd.4 ( 𝜑𝐹𝐴 )
4 climaddc1.5 ( 𝜑𝐶 ∈ ℂ )
5 climaddc1.6 ( 𝜑𝐺𝑊 )
6 climaddc1.7 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
7 climaddc2.h ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) = ( 𝐶 + ( 𝐹𝑘 ) ) )
8 4 adantr ( ( 𝜑𝑘𝑍 ) → 𝐶 ∈ ℂ )
9 8 6 7 comraddd ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) = ( ( 𝐹𝑘 ) + 𝐶 ) )
10 1 2 3 4 5 6 9 climaddc1 ( 𝜑𝐺 ⇝ ( 𝐴 + 𝐶 ) )
11 climcl ( 𝐹𝐴𝐴 ∈ ℂ )
12 3 11 syl ( 𝜑𝐴 ∈ ℂ )
13 12 4 addcomd ( 𝜑 → ( 𝐴 + 𝐶 ) = ( 𝐶 + 𝐴 ) )
14 10 13 breqtrd ( 𝜑𝐺 ⇝ ( 𝐶 + 𝐴 ) )