Step |
Hyp |
Ref |
Expression |
1 |
|
climadd.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
climadd.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
climadd.4 |
⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
4 |
|
climaddc1.5 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
5 |
|
climaddc1.6 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
6 |
|
climaddc1.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
7 |
|
climaddc2.h |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐶 + ( 𝐹 ‘ 𝑘 ) ) ) |
8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℂ ) |
9 |
8 6 7
|
comraddd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) + 𝐶 ) ) |
10 |
1 2 3 4 5 6 9
|
climaddc1 |
⊢ ( 𝜑 → 𝐺 ⇝ ( 𝐴 + 𝐶 ) ) |
11 |
|
climcl |
⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
13 |
12 4
|
addcomd |
⊢ ( 𝜑 → ( 𝐴 + 𝐶 ) = ( 𝐶 + 𝐴 ) ) |
14 |
10 13
|
breqtrd |
⊢ ( 𝜑 → 𝐺 ⇝ ( 𝐶 + 𝐴 ) ) |