| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climshft2.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | climshft2.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | climrecl.3 | ⊢ ( 𝜑  →  𝐹  ⇝  𝐴 ) | 
						
							| 4 |  | climrecl.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 5 |  | climge0.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  0  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 6 | 1 | uzsup | ⊢ ( 𝑀  ∈  ℤ  →  sup ( 𝑍 ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝜑  →  sup ( 𝑍 ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 8 |  | climrel | ⊢ Rel   ⇝ | 
						
							| 9 | 8 | brrelex1i | ⊢ ( 𝐹  ⇝  𝐴  →  𝐹  ∈  V ) | 
						
							| 10 | 3 9 | syl | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) )  =  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 12 | 1 11 | climmpt | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹  ∈  V )  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) )  ⇝  𝐴 ) ) | 
						
							| 13 | 2 10 12 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ⇝  𝐴  ↔  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) )  ⇝  𝐴 ) ) | 
						
							| 14 | 3 13 | mpbid | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) )  ⇝  𝐴 ) | 
						
							| 15 | 4 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 16 | 15 | fmpttd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) ) : 𝑍 ⟶ ℂ ) | 
						
							| 17 | 1 2 16 | rlimclim | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) )  ⇝𝑟  𝐴  ↔  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) )  ⇝  𝐴 ) ) | 
						
							| 18 | 14 17 | mpbird | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑍  ↦  ( 𝐹 ‘ 𝑘 ) )  ⇝𝑟  𝐴 ) | 
						
							| 19 | 7 18 4 5 | rlimge0 | ⊢ ( 𝜑  →  0  ≤  𝐴 ) |