Step |
Hyp |
Ref |
Expression |
1 |
|
climshft2.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
climshft2.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
climrecl.3 |
|- ( ph -> F ~~> A ) |
4 |
|
climrecl.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
5 |
|
climge0.5 |
|- ( ( ph /\ k e. Z ) -> 0 <_ ( F ` k ) ) |
6 |
1
|
uzsup |
|- ( M e. ZZ -> sup ( Z , RR* , < ) = +oo ) |
7 |
2 6
|
syl |
|- ( ph -> sup ( Z , RR* , < ) = +oo ) |
8 |
|
climrel |
|- Rel ~~> |
9 |
8
|
brrelex1i |
|- ( F ~~> A -> F e. _V ) |
10 |
3 9
|
syl |
|- ( ph -> F e. _V ) |
11 |
|
eqid |
|- ( k e. Z |-> ( F ` k ) ) = ( k e. Z |-> ( F ` k ) ) |
12 |
1 11
|
climmpt |
|- ( ( M e. ZZ /\ F e. _V ) -> ( F ~~> A <-> ( k e. Z |-> ( F ` k ) ) ~~> A ) ) |
13 |
2 10 12
|
syl2anc |
|- ( ph -> ( F ~~> A <-> ( k e. Z |-> ( F ` k ) ) ~~> A ) ) |
14 |
3 13
|
mpbid |
|- ( ph -> ( k e. Z |-> ( F ` k ) ) ~~> A ) |
15 |
4
|
recnd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
16 |
15
|
fmpttd |
|- ( ph -> ( k e. Z |-> ( F ` k ) ) : Z --> CC ) |
17 |
1 2 16
|
rlimclim |
|- ( ph -> ( ( k e. Z |-> ( F ` k ) ) ~~>r A <-> ( k e. Z |-> ( F ` k ) ) ~~> A ) ) |
18 |
14 17
|
mpbird |
|- ( ph -> ( k e. Z |-> ( F ` k ) ) ~~>r A ) |
19 |
7 18 4 5
|
rlimge0 |
|- ( ph -> 0 <_ A ) |