Metamath Proof Explorer


Theorem climge0

Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005) (Proof shortened by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses climshft2.1
|- Z = ( ZZ>= ` M )
climshft2.2
|- ( ph -> M e. ZZ )
climrecl.3
|- ( ph -> F ~~> A )
climrecl.4
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR )
climge0.5
|- ( ( ph /\ k e. Z ) -> 0 <_ ( F ` k ) )
Assertion climge0
|- ( ph -> 0 <_ A )

Proof

Step Hyp Ref Expression
1 climshft2.1
 |-  Z = ( ZZ>= ` M )
2 climshft2.2
 |-  ( ph -> M e. ZZ )
3 climrecl.3
 |-  ( ph -> F ~~> A )
4 climrecl.4
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR )
5 climge0.5
 |-  ( ( ph /\ k e. Z ) -> 0 <_ ( F ` k ) )
6 1 uzsup
 |-  ( M e. ZZ -> sup ( Z , RR* , < ) = +oo )
7 2 6 syl
 |-  ( ph -> sup ( Z , RR* , < ) = +oo )
8 climrel
 |-  Rel ~~>
9 8 brrelex1i
 |-  ( F ~~> A -> F e. _V )
10 3 9 syl
 |-  ( ph -> F e. _V )
11 eqid
 |-  ( k e. Z |-> ( F ` k ) ) = ( k e. Z |-> ( F ` k ) )
12 1 11 climmpt
 |-  ( ( M e. ZZ /\ F e. _V ) -> ( F ~~> A <-> ( k e. Z |-> ( F ` k ) ) ~~> A ) )
13 2 10 12 syl2anc
 |-  ( ph -> ( F ~~> A <-> ( k e. Z |-> ( F ` k ) ) ~~> A ) )
14 3 13 mpbid
 |-  ( ph -> ( k e. Z |-> ( F ` k ) ) ~~> A )
15 4 recnd
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC )
16 15 fmpttd
 |-  ( ph -> ( k e. Z |-> ( F ` k ) ) : Z --> CC )
17 1 2 16 rlimclim
 |-  ( ph -> ( ( k e. Z |-> ( F ` k ) ) ~~>r A <-> ( k e. Z |-> ( F ` k ) ) ~~> A ) )
18 14 17 mpbird
 |-  ( ph -> ( k e. Z |-> ( F ` k ) ) ~~>r A )
19 7 18 4 5 rlimge0
 |-  ( ph -> 0 <_ A )