| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climshft2.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | climshft2.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | climrecl.3 |  |-  ( ph -> F ~~> A ) | 
						
							| 4 |  | climrecl.4 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) | 
						
							| 5 |  | climge0.5 |  |-  ( ( ph /\ k e. Z ) -> 0 <_ ( F ` k ) ) | 
						
							| 6 | 1 | uzsup |  |-  ( M e. ZZ -> sup ( Z , RR* , < ) = +oo ) | 
						
							| 7 | 2 6 | syl |  |-  ( ph -> sup ( Z , RR* , < ) = +oo ) | 
						
							| 8 |  | climrel |  |-  Rel ~~> | 
						
							| 9 | 8 | brrelex1i |  |-  ( F ~~> A -> F e. _V ) | 
						
							| 10 | 3 9 | syl |  |-  ( ph -> F e. _V ) | 
						
							| 11 |  | eqid |  |-  ( k e. Z |-> ( F ` k ) ) = ( k e. Z |-> ( F ` k ) ) | 
						
							| 12 | 1 11 | climmpt |  |-  ( ( M e. ZZ /\ F e. _V ) -> ( F ~~> A <-> ( k e. Z |-> ( F ` k ) ) ~~> A ) ) | 
						
							| 13 | 2 10 12 | syl2anc |  |-  ( ph -> ( F ~~> A <-> ( k e. Z |-> ( F ` k ) ) ~~> A ) ) | 
						
							| 14 | 3 13 | mpbid |  |-  ( ph -> ( k e. Z |-> ( F ` k ) ) ~~> A ) | 
						
							| 15 | 4 | recnd |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) | 
						
							| 16 | 15 | fmpttd |  |-  ( ph -> ( k e. Z |-> ( F ` k ) ) : Z --> CC ) | 
						
							| 17 | 1 2 16 | rlimclim |  |-  ( ph -> ( ( k e. Z |-> ( F ` k ) ) ~~>r A <-> ( k e. Z |-> ( F ` k ) ) ~~> A ) ) | 
						
							| 18 | 14 17 | mpbird |  |-  ( ph -> ( k e. Z |-> ( F ` k ) ) ~~>r A ) | 
						
							| 19 | 7 18 4 5 | rlimge0 |  |-  ( ph -> 0 <_ A ) |