Description: Exhibit a function G with the same convergence properties as the not-quite-function F . (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climmptf.k | ⊢ Ⅎ 𝑘 𝐹 | |
| climmptf.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climmptf.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | ||
| climmptf.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| climmptf.g | ⊢ 𝐺 = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) | ||
| Assertion | climmptf | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climmptf.k | ⊢ Ⅎ 𝑘 𝐹 | |
| 2 | climmptf.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climmptf.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 4 | climmptf.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 5 | climmptf.g | ⊢ 𝐺 = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) | |
| 6 | nfcv | ⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑘 ) | |
| 7 | nfcv | ⊢ Ⅎ 𝑘 𝑗 | |
| 8 | 1 7 | nffv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) |
| 9 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 10 | 6 8 9 | cbvmpt | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) |
| 11 | 5 10 | eqtri | ⊢ 𝐺 = ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) |
| 12 | 4 11 | climmpt | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴 ) ) |
| 13 | 2 3 12 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴 ) ) |