| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climmptf.k |
|- F/_ k F |
| 2 |
|
climmptf.m |
|- ( ph -> M e. ZZ ) |
| 3 |
|
climmptf.f |
|- ( ph -> F e. V ) |
| 4 |
|
climmptf.z |
|- Z = ( ZZ>= ` M ) |
| 5 |
|
climmptf.g |
|- G = ( k e. Z |-> ( F ` k ) ) |
| 6 |
|
nfcv |
|- F/_ j ( F ` k ) |
| 7 |
|
nfcv |
|- F/_ k j |
| 8 |
1 7
|
nffv |
|- F/_ k ( F ` j ) |
| 9 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
| 10 |
6 8 9
|
cbvmpt |
|- ( k e. Z |-> ( F ` k ) ) = ( j e. Z |-> ( F ` j ) ) |
| 11 |
5 10
|
eqtri |
|- G = ( j e. Z |-> ( F ` j ) ) |
| 12 |
4 11
|
climmpt |
|- ( ( M e. ZZ /\ F e. V ) -> ( F ~~> A <-> G ~~> A ) ) |
| 13 |
2 3 12
|
syl2anc |
|- ( ph -> ( F ~~> A <-> G ~~> A ) ) |