Description: Closure of ring subtraction for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| clmsub.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | clmsubcl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 − 𝑌 ) ∈ 𝐾 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | clmsub.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | 1 2 | clmsubrg | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) | 
| 4 | subrgsubg | ⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) | 
| 6 | cnfldsub | ⊢ − = ( -g ‘ ℂfld ) | |
| 7 | 6 | subgsubcl | ⊢ ( ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 − 𝑌 ) ∈ 𝐾 ) | 
| 8 | 5 7 | syl3an1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 − 𝑌 ) ∈ 𝐾 ) |