| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmhmlmod1 | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝑆  ∈  LMod ) | 
						
							| 2 |  | lmhmlmod2 | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝑇  ∈  LMod ) | 
						
							| 3 | 1 2 | 2thd | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( 𝑆  ∈  LMod  ↔  𝑇  ∈  LMod ) ) | 
						
							| 4 |  | eqid | ⊢ ( Scalar ‘ 𝑆 )  =  ( Scalar ‘ 𝑆 ) | 
						
							| 5 |  | eqid | ⊢ ( Scalar ‘ 𝑇 )  =  ( Scalar ‘ 𝑇 ) | 
						
							| 6 | 4 5 | lmhmsca | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( Scalar ‘ 𝑇 )  =  ( Scalar ‘ 𝑆 ) ) | 
						
							| 7 | 6 | eqcomd | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( Scalar ‘ 𝑆 )  =  ( Scalar ‘ 𝑇 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( Base ‘ ( Scalar ‘ 𝑆 ) )  =  ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) ) | 
						
							| 10 | 7 9 | eqeq12d | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( ( Scalar ‘ 𝑆 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  ↔  ( Scalar ‘ 𝑇 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) ) ) | 
						
							| 11 | 8 | eleq1d | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∈  ( SubRing ‘ ℂfld )  ↔  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∈  ( SubRing ‘ ℂfld ) ) ) | 
						
							| 12 | 3 10 11 | 3anbi123d | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( ( 𝑆  ∈  LMod  ∧  ( Scalar ‘ 𝑆 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  ∧  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∈  ( SubRing ‘ ℂfld ) )  ↔  ( 𝑇  ∈  LMod  ∧  ( Scalar ‘ 𝑇 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑇 ) ) )  ∧  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∈  ( SubRing ‘ ℂfld ) ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) )  =  ( Base ‘ ( Scalar ‘ 𝑆 ) ) | 
						
							| 14 | 4 13 | isclm | ⊢ ( 𝑆  ∈  ℂMod  ↔  ( 𝑆  ∈  LMod  ∧  ( Scalar ‘ 𝑆 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑆 ) ) )  ∧  ( Base ‘ ( Scalar ‘ 𝑆 ) )  ∈  ( SubRing ‘ ℂfld ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) )  =  ( Base ‘ ( Scalar ‘ 𝑇 ) ) | 
						
							| 16 | 5 15 | isclm | ⊢ ( 𝑇  ∈  ℂMod  ↔  ( 𝑇  ∈  LMod  ∧  ( Scalar ‘ 𝑇 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑇 ) ) )  ∧  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∈  ( SubRing ‘ ℂfld ) ) ) | 
						
							| 17 | 12 14 16 | 3bitr4g | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( 𝑆  ∈  ℂMod  ↔  𝑇  ∈  ℂMod ) ) |