| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmhmlmod1 |  |-  ( F e. ( S LMHom T ) -> S e. LMod ) | 
						
							| 2 |  | lmhmlmod2 |  |-  ( F e. ( S LMHom T ) -> T e. LMod ) | 
						
							| 3 | 1 2 | 2thd |  |-  ( F e. ( S LMHom T ) -> ( S e. LMod <-> T e. LMod ) ) | 
						
							| 4 |  | eqid |  |-  ( Scalar ` S ) = ( Scalar ` S ) | 
						
							| 5 |  | eqid |  |-  ( Scalar ` T ) = ( Scalar ` T ) | 
						
							| 6 | 4 5 | lmhmsca |  |-  ( F e. ( S LMHom T ) -> ( Scalar ` T ) = ( Scalar ` S ) ) | 
						
							| 7 | 6 | eqcomd |  |-  ( F e. ( S LMHom T ) -> ( Scalar ` S ) = ( Scalar ` T ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( F e. ( S LMHom T ) -> ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` T ) ) ) | 
						
							| 9 | 8 | oveq2d |  |-  ( F e. ( S LMHom T ) -> ( CCfld |`s ( Base ` ( Scalar ` S ) ) ) = ( CCfld |`s ( Base ` ( Scalar ` T ) ) ) ) | 
						
							| 10 | 7 9 | eqeq12d |  |-  ( F e. ( S LMHom T ) -> ( ( Scalar ` S ) = ( CCfld |`s ( Base ` ( Scalar ` S ) ) ) <-> ( Scalar ` T ) = ( CCfld |`s ( Base ` ( Scalar ` T ) ) ) ) ) | 
						
							| 11 | 8 | eleq1d |  |-  ( F e. ( S LMHom T ) -> ( ( Base ` ( Scalar ` S ) ) e. ( SubRing ` CCfld ) <-> ( Base ` ( Scalar ` T ) ) e. ( SubRing ` CCfld ) ) ) | 
						
							| 12 | 3 10 11 | 3anbi123d |  |-  ( F e. ( S LMHom T ) -> ( ( S e. LMod /\ ( Scalar ` S ) = ( CCfld |`s ( Base ` ( Scalar ` S ) ) ) /\ ( Base ` ( Scalar ` S ) ) e. ( SubRing ` CCfld ) ) <-> ( T e. LMod /\ ( Scalar ` T ) = ( CCfld |`s ( Base ` ( Scalar ` T ) ) ) /\ ( Base ` ( Scalar ` T ) ) e. ( SubRing ` CCfld ) ) ) ) | 
						
							| 13 |  | eqid |  |-  ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) | 
						
							| 14 | 4 13 | isclm |  |-  ( S e. CMod <-> ( S e. LMod /\ ( Scalar ` S ) = ( CCfld |`s ( Base ` ( Scalar ` S ) ) ) /\ ( Base ` ( Scalar ` S ) ) e. ( SubRing ` CCfld ) ) ) | 
						
							| 15 |  | eqid |  |-  ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) ) | 
						
							| 16 | 5 15 | isclm |  |-  ( T e. CMod <-> ( T e. LMod /\ ( Scalar ` T ) = ( CCfld |`s ( Base ` ( Scalar ` T ) ) ) /\ ( Base ` ( Scalar ` T ) ) e. ( SubRing ` CCfld ) ) ) | 
						
							| 17 | 12 14 16 | 3bitr4g |  |-  ( F e. ( S LMHom T ) -> ( S e. CMod <-> T e. CMod ) ) |