| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlkclwwlkf.c | ⊢ 𝐶  =  { 𝑤  ∈  ( ClWalks ‘ 𝐺 )  ∣  1  ≤  ( ♯ ‘ ( 1st  ‘ 𝑤 ) ) } | 
						
							| 2 |  | clwlkclwwlkf.f | ⊢ 𝐹  =  ( 𝑐  ∈  𝐶  ↦  ( ( 2nd  ‘ 𝑐 )  prefix  ( ( ♯ ‘ ( 2nd  ‘ 𝑐 ) )  −  1 ) ) ) | 
						
							| 3 | 1 2 | clwlkclwwlkf1 | ⊢ ( 𝐺  ∈  USPGraph  →  𝐹 : 𝐶 –1-1→ ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 4 | 1 2 | clwlkclwwlkfo | ⊢ ( 𝐺  ∈  USPGraph  →  𝐹 : 𝐶 –onto→ ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 5 |  | df-f1o | ⊢ ( 𝐹 : 𝐶 –1-1-onto→ ( ClWWalks ‘ 𝐺 )  ↔  ( 𝐹 : 𝐶 –1-1→ ( ClWWalks ‘ 𝐺 )  ∧  𝐹 : 𝐶 –onto→ ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 6 | 3 4 5 | sylanbrc | ⊢ ( 𝐺  ∈  USPGraph  →  𝐹 : 𝐶 –1-1-onto→ ( ClWWalks ‘ 𝐺 ) ) |