Metamath Proof Explorer


Theorem clwlkclwwlkf1o

Description: F is a bijection between the nonempty closed walks and the closed walks as words in a simple pseudograph. (Contributed by Alexander van der Vekens, 5-Jul-2018) (Revised by AV, 3-May-2021) (Revised by AV, 29-Oct-2022)

Ref Expression
Hypotheses clwlkclwwlkf.c C = w ClWalks G | 1 1 st w
clwlkclwwlkf.f F = c C 2 nd c prefix 2 nd c 1
Assertion clwlkclwwlkf1o G USHGraph F : C 1-1 onto ClWWalks G

Proof

Step Hyp Ref Expression
1 clwlkclwwlkf.c C = w ClWalks G | 1 1 st w
2 clwlkclwwlkf.f F = c C 2 nd c prefix 2 nd c 1
3 1 2 clwlkclwwlkf1 G USHGraph F : C 1-1 ClWWalks G
4 1 2 clwlkclwwlkfo G USHGraph F : C onto ClWWalks G
5 df-f1o F : C 1-1 onto ClWWalks G F : C 1-1 ClWWalks G F : C onto ClWWalks G
6 3 4 5 sylanbrc G USHGraph F : C 1-1 onto ClWWalks G