Description: A complete metric space is a metric space. (Contributed by NM, 26-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cmetmeti.1 | ⊢ 𝐷 ∈ ( CMet ‘ 𝑋 ) | |
| Assertion | cmetmeti | ⊢ 𝐷 ∈ ( Met ‘ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmetmeti.1 | ⊢ 𝐷 ∈ ( CMet ‘ 𝑋 ) | |
| 2 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ 𝐷 ∈ ( Met ‘ 𝑋 ) |