Metamath Proof Explorer


Theorem cmetmeti

Description: A complete metric space is a metric space. (Contributed by NM, 26-Oct-2007)

Ref Expression
Hypothesis cmetmeti.1 D CMet X
Assertion cmetmeti D Met X

Proof

Step Hyp Ref Expression
1 cmetmeti.1 D CMet X
2 cmetmet D CMet X D Met X
3 1 2 ax-mp D Met X