Metamath Proof Explorer


Theorem cmetmet

Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006) (Revised by Mario Carneiro, 29-Jan-2014)

Ref Expression
Assertion cmetmet DCMetXDMetX

Proof

Step Hyp Ref Expression
1 eqid MetOpenD=MetOpenD
2 1 iscmet DCMetXDMetXfCauFilDMetOpenDfLimf
3 2 simplbi DCMetXDMetX