Metamath Proof Explorer


Theorem cnvtrrel

Description: The converse of a transitive relation is a transitive relation. (Contributed by RP, 25-Dec-2019)

Ref Expression
Assertion cnvtrrel ( ( 𝑆𝑆 ) ⊆ 𝑆 ↔ ( 𝑆 𝑆 ) ⊆ 𝑆 )

Proof

Step Hyp Ref Expression
1 cnvss ( ( 𝑆𝑆 ) ⊆ 𝑆 ( 𝑆𝑆 ) ⊆ 𝑆 )
2 cnvss ( ( 𝑆𝑆 ) ⊆ 𝑆 ( 𝑆𝑆 ) ⊆ 𝑆 )
3 cnvco ( 𝑆𝑆 ) = ( 𝑆 𝑆 )
4 3 cnveqi ( 𝑆𝑆 ) = ( 𝑆 𝑆 )
5 cnvco ( 𝑆 𝑆 ) = ( 𝑆 𝑆 )
6 cocnvcnv1 ( 𝑆 𝑆 ) = ( 𝑆 𝑆 )
7 cocnvcnv2 ( 𝑆 𝑆 ) = ( 𝑆𝑆 )
8 6 7 eqtri ( 𝑆 𝑆 ) = ( 𝑆𝑆 )
9 4 5 8 3eqtri ( 𝑆𝑆 ) = ( 𝑆𝑆 )
10 9 sseq1i ( ( 𝑆𝑆 ) ⊆ 𝑆 ↔ ( 𝑆𝑆 ) ⊆ 𝑆 )
11 10 biimpi ( ( 𝑆𝑆 ) ⊆ 𝑆 → ( 𝑆𝑆 ) ⊆ 𝑆 )
12 cnvcnvss 𝑆𝑆
13 11 12 sstrdi ( ( 𝑆𝑆 ) ⊆ 𝑆 → ( 𝑆𝑆 ) ⊆ 𝑆 )
14 2 13 syl ( ( 𝑆𝑆 ) ⊆ 𝑆 → ( 𝑆𝑆 ) ⊆ 𝑆 )
15 1 14 impbii ( ( 𝑆𝑆 ) ⊆ 𝑆 ( 𝑆𝑆 ) ⊆ 𝑆 )
16 3 sseq1i ( ( 𝑆𝑆 ) ⊆ 𝑆 ↔ ( 𝑆 𝑆 ) ⊆ 𝑆 )
17 15 16 bitri ( ( 𝑆𝑆 ) ⊆ 𝑆 ↔ ( 𝑆 𝑆 ) ⊆ 𝑆 )