| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnvss |
⊢ ( ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 → ◡ ( 𝑆 ∘ 𝑆 ) ⊆ ◡ 𝑆 ) |
| 2 |
|
cnvss |
⊢ ( ◡ ( 𝑆 ∘ 𝑆 ) ⊆ ◡ 𝑆 → ◡ ◡ ( 𝑆 ∘ 𝑆 ) ⊆ ◡ ◡ 𝑆 ) |
| 3 |
|
cnvco |
⊢ ◡ ( 𝑆 ∘ 𝑆 ) = ( ◡ 𝑆 ∘ ◡ 𝑆 ) |
| 4 |
3
|
cnveqi |
⊢ ◡ ◡ ( 𝑆 ∘ 𝑆 ) = ◡ ( ◡ 𝑆 ∘ ◡ 𝑆 ) |
| 5 |
|
cnvco |
⊢ ◡ ( ◡ 𝑆 ∘ ◡ 𝑆 ) = ( ◡ ◡ 𝑆 ∘ ◡ ◡ 𝑆 ) |
| 6 |
|
cocnvcnv1 |
⊢ ( ◡ ◡ 𝑆 ∘ ◡ ◡ 𝑆 ) = ( 𝑆 ∘ ◡ ◡ 𝑆 ) |
| 7 |
|
cocnvcnv2 |
⊢ ( 𝑆 ∘ ◡ ◡ 𝑆 ) = ( 𝑆 ∘ 𝑆 ) |
| 8 |
6 7
|
eqtri |
⊢ ( ◡ ◡ 𝑆 ∘ ◡ ◡ 𝑆 ) = ( 𝑆 ∘ 𝑆 ) |
| 9 |
4 5 8
|
3eqtri |
⊢ ◡ ◡ ( 𝑆 ∘ 𝑆 ) = ( 𝑆 ∘ 𝑆 ) |
| 10 |
9
|
sseq1i |
⊢ ( ◡ ◡ ( 𝑆 ∘ 𝑆 ) ⊆ ◡ ◡ 𝑆 ↔ ( 𝑆 ∘ 𝑆 ) ⊆ ◡ ◡ 𝑆 ) |
| 11 |
10
|
biimpi |
⊢ ( ◡ ◡ ( 𝑆 ∘ 𝑆 ) ⊆ ◡ ◡ 𝑆 → ( 𝑆 ∘ 𝑆 ) ⊆ ◡ ◡ 𝑆 ) |
| 12 |
|
cnvcnvss |
⊢ ◡ ◡ 𝑆 ⊆ 𝑆 |
| 13 |
11 12
|
sstrdi |
⊢ ( ◡ ◡ ( 𝑆 ∘ 𝑆 ) ⊆ ◡ ◡ 𝑆 → ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) |
| 14 |
2 13
|
syl |
⊢ ( ◡ ( 𝑆 ∘ 𝑆 ) ⊆ ◡ 𝑆 → ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) |
| 15 |
1 14
|
impbii |
⊢ ( ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ↔ ◡ ( 𝑆 ∘ 𝑆 ) ⊆ ◡ 𝑆 ) |
| 16 |
3
|
sseq1i |
⊢ ( ◡ ( 𝑆 ∘ 𝑆 ) ⊆ ◡ 𝑆 ↔ ( ◡ 𝑆 ∘ ◡ 𝑆 ) ⊆ ◡ 𝑆 ) |
| 17 |
15 16
|
bitri |
⊢ ( ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ↔ ( ◡ 𝑆 ∘ ◡ 𝑆 ) ⊆ ◡ 𝑆 ) |