Step |
Hyp |
Ref |
Expression |
1 |
|
cnvss |
|- ( ( S o. S ) C_ S -> `' ( S o. S ) C_ `' S ) |
2 |
|
cnvss |
|- ( `' ( S o. S ) C_ `' S -> `' `' ( S o. S ) C_ `' `' S ) |
3 |
|
cnvco |
|- `' ( S o. S ) = ( `' S o. `' S ) |
4 |
3
|
cnveqi |
|- `' `' ( S o. S ) = `' ( `' S o. `' S ) |
5 |
|
cnvco |
|- `' ( `' S o. `' S ) = ( `' `' S o. `' `' S ) |
6 |
|
cocnvcnv1 |
|- ( `' `' S o. `' `' S ) = ( S o. `' `' S ) |
7 |
|
cocnvcnv2 |
|- ( S o. `' `' S ) = ( S o. S ) |
8 |
6 7
|
eqtri |
|- ( `' `' S o. `' `' S ) = ( S o. S ) |
9 |
4 5 8
|
3eqtri |
|- `' `' ( S o. S ) = ( S o. S ) |
10 |
9
|
sseq1i |
|- ( `' `' ( S o. S ) C_ `' `' S <-> ( S o. S ) C_ `' `' S ) |
11 |
10
|
biimpi |
|- ( `' `' ( S o. S ) C_ `' `' S -> ( S o. S ) C_ `' `' S ) |
12 |
|
cnvcnvss |
|- `' `' S C_ S |
13 |
11 12
|
sstrdi |
|- ( `' `' ( S o. S ) C_ `' `' S -> ( S o. S ) C_ S ) |
14 |
2 13
|
syl |
|- ( `' ( S o. S ) C_ `' S -> ( S o. S ) C_ S ) |
15 |
1 14
|
impbii |
|- ( ( S o. S ) C_ S <-> `' ( S o. S ) C_ `' S ) |
16 |
3
|
sseq1i |
|- ( `' ( S o. S ) C_ `' S <-> ( `' S o. `' S ) C_ `' S ) |
17 |
15 16
|
bitri |
|- ( ( S o. S ) C_ S <-> ( `' S o. `' S ) C_ `' S ) |