Metamath Proof Explorer


Theorem cnvtrrel

Description: The converse of a transitive relation is a transitive relation. (Contributed by RP, 25-Dec-2019)

Ref Expression
Assertion cnvtrrel
|- ( ( S o. S ) C_ S <-> ( `' S o. `' S ) C_ `' S )

Proof

Step Hyp Ref Expression
1 cnvss
 |-  ( ( S o. S ) C_ S -> `' ( S o. S ) C_ `' S )
2 cnvss
 |-  ( `' ( S o. S ) C_ `' S -> `' `' ( S o. S ) C_ `' `' S )
3 cnvco
 |-  `' ( S o. S ) = ( `' S o. `' S )
4 3 cnveqi
 |-  `' `' ( S o. S ) = `' ( `' S o. `' S )
5 cnvco
 |-  `' ( `' S o. `' S ) = ( `' `' S o. `' `' S )
6 cocnvcnv1
 |-  ( `' `' S o. `' `' S ) = ( S o. `' `' S )
7 cocnvcnv2
 |-  ( S o. `' `' S ) = ( S o. S )
8 6 7 eqtri
 |-  ( `' `' S o. `' `' S ) = ( S o. S )
9 4 5 8 3eqtri
 |-  `' `' ( S o. S ) = ( S o. S )
10 9 sseq1i
 |-  ( `' `' ( S o. S ) C_ `' `' S <-> ( S o. S ) C_ `' `' S )
11 10 biimpi
 |-  ( `' `' ( S o. S ) C_ `' `' S -> ( S o. S ) C_ `' `' S )
12 cnvcnvss
 |-  `' `' S C_ S
13 11 12 sstrdi
 |-  ( `' `' ( S o. S ) C_ `' `' S -> ( S o. S ) C_ S )
14 2 13 syl
 |-  ( `' ( S o. S ) C_ `' S -> ( S o. S ) C_ S )
15 1 14 impbii
 |-  ( ( S o. S ) C_ S <-> `' ( S o. S ) C_ `' S )
16 3 sseq1i
 |-  ( `' ( S o. S ) C_ `' S <-> ( `' S o. `' S ) C_ `' S )
17 15 16 bitri
 |-  ( ( S o. S ) C_ S <-> ( `' S o. `' S ) C_ `' S )