| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trrelsuperrel2dg.s |
|- ( ph -> S = ( R u. ( dom R X. ran R ) ) ) |
| 2 |
|
ssun1 |
|- R C_ ( R u. ( dom R X. ran R ) ) |
| 3 |
2 1
|
sseqtrrid |
|- ( ph -> R C_ S ) |
| 4 |
|
xptrrel |
|- ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) C_ ( dom R X. ran R ) |
| 5 |
|
ssun2 |
|- ( dom R X. ran R ) C_ ( R u. ( dom R X. ran R ) ) |
| 6 |
4 5
|
sstri |
|- ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) C_ ( R u. ( dom R X. ran R ) ) |
| 7 |
6
|
a1i |
|- ( ph -> ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) C_ ( R u. ( dom R X. ran R ) ) ) |
| 8 |
1 1
|
coeq12d |
|- ( ph -> ( S o. S ) = ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) ) |
| 9 |
|
coundir |
|- ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) = ( ( R o. ( R u. ( dom R X. ran R ) ) ) u. ( ( dom R X. ran R ) o. ( R u. ( dom R X. ran R ) ) ) ) |
| 10 |
|
relcnv |
|- Rel `' `' R |
| 11 |
|
cocnvcnv1 |
|- ( `' `' R o. ( R u. ( dom R X. ran R ) ) ) = ( R o. ( R u. ( dom R X. ran R ) ) ) |
| 12 |
|
relssdmrn |
|- ( Rel `' `' R -> `' `' R C_ ( dom `' `' R X. ran `' `' R ) ) |
| 13 |
|
dmcnvcnv |
|- dom `' `' R = dom R |
| 14 |
|
rncnvcnv |
|- ran `' `' R = ran R |
| 15 |
13 14
|
xpeq12i |
|- ( dom `' `' R X. ran `' `' R ) = ( dom R X. ran R ) |
| 16 |
12 15
|
sseqtrdi |
|- ( Rel `' `' R -> `' `' R C_ ( dom R X. ran R ) ) |
| 17 |
|
coss1 |
|- ( `' `' R C_ ( dom R X. ran R ) -> ( `' `' R o. ( R u. ( dom R X. ran R ) ) ) C_ ( ( dom R X. ran R ) o. ( R u. ( dom R X. ran R ) ) ) ) |
| 18 |
16 17
|
syl |
|- ( Rel `' `' R -> ( `' `' R o. ( R u. ( dom R X. ran R ) ) ) C_ ( ( dom R X. ran R ) o. ( R u. ( dom R X. ran R ) ) ) ) |
| 19 |
11 18
|
eqsstrrid |
|- ( Rel `' `' R -> ( R o. ( R u. ( dom R X. ran R ) ) ) C_ ( ( dom R X. ran R ) o. ( R u. ( dom R X. ran R ) ) ) ) |
| 20 |
|
ssequn1 |
|- ( ( R o. ( R u. ( dom R X. ran R ) ) ) C_ ( ( dom R X. ran R ) o. ( R u. ( dom R X. ran R ) ) ) <-> ( ( R o. ( R u. ( dom R X. ran R ) ) ) u. ( ( dom R X. ran R ) o. ( R u. ( dom R X. ran R ) ) ) ) = ( ( dom R X. ran R ) o. ( R u. ( dom R X. ran R ) ) ) ) |
| 21 |
19 20
|
sylib |
|- ( Rel `' `' R -> ( ( R o. ( R u. ( dom R X. ran R ) ) ) u. ( ( dom R X. ran R ) o. ( R u. ( dom R X. ran R ) ) ) ) = ( ( dom R X. ran R ) o. ( R u. ( dom R X. ran R ) ) ) ) |
| 22 |
10 21
|
ax-mp |
|- ( ( R o. ( R u. ( dom R X. ran R ) ) ) u. ( ( dom R X. ran R ) o. ( R u. ( dom R X. ran R ) ) ) ) = ( ( dom R X. ran R ) o. ( R u. ( dom R X. ran R ) ) ) |
| 23 |
9 22
|
eqtri |
|- ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) = ( ( dom R X. ran R ) o. ( R u. ( dom R X. ran R ) ) ) |
| 24 |
|
coundi |
|- ( ( dom R X. ran R ) o. ( R u. ( dom R X. ran R ) ) ) = ( ( ( dom R X. ran R ) o. R ) u. ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) |
| 25 |
|
cocnvcnv2 |
|- ( ( dom R X. ran R ) o. `' `' R ) = ( ( dom R X. ran R ) o. R ) |
| 26 |
|
coss2 |
|- ( `' `' R C_ ( dom R X. ran R ) -> ( ( dom R X. ran R ) o. `' `' R ) C_ ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) |
| 27 |
16 26
|
syl |
|- ( Rel `' `' R -> ( ( dom R X. ran R ) o. `' `' R ) C_ ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) |
| 28 |
25 27
|
eqsstrrid |
|- ( Rel `' `' R -> ( ( dom R X. ran R ) o. R ) C_ ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) |
| 29 |
|
ssequn1 |
|- ( ( ( dom R X. ran R ) o. R ) C_ ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) <-> ( ( ( dom R X. ran R ) o. R ) u. ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) = ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) |
| 30 |
28 29
|
sylib |
|- ( Rel `' `' R -> ( ( ( dom R X. ran R ) o. R ) u. ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) = ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) |
| 31 |
10 30
|
ax-mp |
|- ( ( ( dom R X. ran R ) o. R ) u. ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) = ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) |
| 32 |
24 31
|
eqtri |
|- ( ( dom R X. ran R ) o. ( R u. ( dom R X. ran R ) ) ) = ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) |
| 33 |
23 32
|
eqtri |
|- ( ( R u. ( dom R X. ran R ) ) o. ( R u. ( dom R X. ran R ) ) ) = ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) |
| 34 |
8 33
|
eqtrdi |
|- ( ph -> ( S o. S ) = ( ( dom R X. ran R ) o. ( dom R X. ran R ) ) ) |
| 35 |
7 34 1
|
3sstr4d |
|- ( ph -> ( S o. S ) C_ S ) |
| 36 |
3 35
|
jca |
|- ( ph -> ( R C_ S /\ ( S o. S ) C_ S ) ) |