| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							relco | 
							⊢ Rel  ( 𝐴  ∘   I  )  | 
						
						
							| 2 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 3 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 4 | 
							
								2 3
							 | 
							opelco | 
							⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ( 𝐴  ∘   I  )  ↔  ∃ 𝑧 ( 𝑥  I  𝑧  ∧  𝑧 𝐴 𝑦 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							vex | 
							⊢ 𝑧  ∈  V  | 
						
						
							| 6 | 
							
								5
							 | 
							ideq | 
							⊢ ( 𝑥  I  𝑧  ↔  𝑥  =  𝑧 )  | 
						
						
							| 7 | 
							
								
							 | 
							equcom | 
							⊢ ( 𝑥  =  𝑧  ↔  𝑧  =  𝑥 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							bitri | 
							⊢ ( 𝑥  I  𝑧  ↔  𝑧  =  𝑥 )  | 
						
						
							| 9 | 
							
								8
							 | 
							anbi1i | 
							⊢ ( ( 𝑥  I  𝑧  ∧  𝑧 𝐴 𝑦 )  ↔  ( 𝑧  =  𝑥  ∧  𝑧 𝐴 𝑦 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							exbii | 
							⊢ ( ∃ 𝑧 ( 𝑥  I  𝑧  ∧  𝑧 𝐴 𝑦 )  ↔  ∃ 𝑧 ( 𝑧  =  𝑥  ∧  𝑧 𝐴 𝑦 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑧  =  𝑥  →  ( 𝑧 𝐴 𝑦  ↔  𝑥 𝐴 𝑦 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							equsexvw | 
							⊢ ( ∃ 𝑧 ( 𝑧  =  𝑥  ∧  𝑧 𝐴 𝑦 )  ↔  𝑥 𝐴 𝑦 )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							bitri | 
							⊢ ( ∃ 𝑧 ( 𝑥  I  𝑧  ∧  𝑧 𝐴 𝑦 )  ↔  𝑥 𝐴 𝑦 )  | 
						
						
							| 14 | 
							
								4 13
							 | 
							bitri | 
							⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ( 𝐴  ∘   I  )  ↔  𝑥 𝐴 𝑦 )  | 
						
						
							| 15 | 
							
								
							 | 
							df-br | 
							⊢ ( 𝑥 𝐴 𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  𝐴 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							bitri | 
							⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ( 𝐴  ∘   I  )  ↔  〈 𝑥 ,  𝑦 〉  ∈  𝐴 )  | 
						
						
							| 17 | 
							
								16
							 | 
							eqrelriv | 
							⊢ ( ( Rel  ( 𝐴  ∘   I  )  ∧  Rel  𝐴 )  →  ( 𝐴  ∘   I  )  =  𝐴 )  | 
						
						
							| 18 | 
							
								1 17
							 | 
							mpan | 
							⊢ ( Rel  𝐴  →  ( 𝐴  ∘   I  )  =  𝐴 )  |