Metamath Proof Explorer
Description: Rotating the points defining a line. Part of Theorem 4.11 of
Schwabhauser p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019)
|
|
Ref |
Expression |
|
Hypotheses |
tglngval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
|
|
tglngval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
|
|
tglngval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
|
|
tglngval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
|
|
tglngval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
|
|
tglngval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
|
|
tgcolg.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
|
|
colrot |
⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ∨ 𝑋 = 𝑌 ) ) |
|
Assertion |
colrot2 |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑍 𝐿 𝑋 ) ∨ 𝑍 = 𝑋 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglngval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tglngval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 3 |
|
tglngval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tglngval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tglngval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 6 |
|
tglngval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
| 7 |
|
tgcolg.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
| 8 |
|
colrot |
⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ∨ 𝑋 = 𝑌 ) ) |
| 9 |
1 2 3 4 5 6 7 8
|
colrot1 |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑌 𝐿 𝑍 ) ∨ 𝑌 = 𝑍 ) ) |
| 10 |
1 2 3 4 6 7 5 9
|
colrot1 |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑍 𝐿 𝑋 ) ∨ 𝑍 = 𝑋 ) ) |