Metamath Proof Explorer
		
		
		
		Description:  Commute RHS addition.  See addcomli to commute addition on LHS.
       (Contributed by David A. Wheeler, 11-Oct-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | comraddi.1 | ⊢ 𝐵  ∈  ℂ | 
					
						|  |  | comraddi.2 | ⊢ 𝐶  ∈  ℂ | 
					
						|  |  | comraddi.3 | ⊢ 𝐴  =  ( 𝐵  +  𝐶 ) | 
				
					|  | Assertion | comraddi | ⊢  𝐴  =  ( 𝐶  +  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | comraddi.1 | ⊢ 𝐵  ∈  ℂ | 
						
							| 2 |  | comraddi.2 | ⊢ 𝐶  ∈  ℂ | 
						
							| 3 |  | comraddi.3 | ⊢ 𝐴  =  ( 𝐵  +  𝐶 ) | 
						
							| 4 | 1 2 | addcomi | ⊢ ( 𝐵  +  𝐶 )  =  ( 𝐶  +  𝐵 ) | 
						
							| 5 | 3 4 | eqtri | ⊢ 𝐴  =  ( 𝐶  +  𝐵 ) |