Metamath Proof Explorer
Description: Commute RHS addition. See addcomli to commute addition on LHS.
(Contributed by David A. Wheeler, 11-Oct-2018)
|
|
Ref |
Expression |
|
Hypotheses |
comraddi.1 |
⊢ 𝐵 ∈ ℂ |
|
|
comraddi.2 |
⊢ 𝐶 ∈ ℂ |
|
|
comraddi.3 |
⊢ 𝐴 = ( 𝐵 + 𝐶 ) |
|
Assertion |
comraddi |
⊢ 𝐴 = ( 𝐶 + 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
comraddi.1 |
⊢ 𝐵 ∈ ℂ |
2 |
|
comraddi.2 |
⊢ 𝐶 ∈ ℂ |
3 |
|
comraddi.3 |
⊢ 𝐴 = ( 𝐵 + 𝐶 ) |
4 |
1 2
|
addcomi |
⊢ ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) |
5 |
3 4
|
eqtri |
⊢ 𝐴 = ( 𝐶 + 𝐵 ) |