Metamath Proof Explorer
		
		
		
		Description:  Commute RHS addition.  See addcomli to commute addition on LHS.
       (Contributed by David A. Wheeler, 11-Oct-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | comraddi.1 | |- B e. CC | 
					
						|  |  | comraddi.2 | |- C e. CC | 
					
						|  |  | comraddi.3 | |- A = ( B + C ) | 
				
					|  | Assertion | comraddi | |- A = ( C + B ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | comraddi.1 |  |-  B e. CC | 
						
							| 2 |  | comraddi.2 |  |-  C e. CC | 
						
							| 3 |  | comraddi.3 |  |-  A = ( B + C ) | 
						
							| 4 | 1 2 | addcomi |  |-  ( B + C ) = ( C + B ) | 
						
							| 5 | 3 4 | eqtri |  |-  A = ( C + B ) |