Metamath Proof Explorer
Description: Commute RHS addition. See addcomli to commute addition on LHS.
(Contributed by David A. Wheeler, 11-Oct-2018)
|
|
Ref |
Expression |
|
Hypotheses |
comraddi.1 |
|- B e. CC |
|
|
comraddi.2 |
|- C e. CC |
|
|
comraddi.3 |
|- A = ( B + C ) |
|
Assertion |
comraddi |
|- A = ( C + B ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
comraddi.1 |
|- B e. CC |
2 |
|
comraddi.2 |
|- C e. CC |
3 |
|
comraddi.3 |
|- A = ( B + C ) |
4 |
1 2
|
addcomi |
|- ( B + C ) = ( C + B ) |
5 |
3 4
|
eqtri |
|- A = ( C + B ) |