Metamath Proof Explorer


Theorem comraddi

Description: Commute RHS addition. See addcomli to commute addition on LHS. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses comraddi.1
|- B e. CC
comraddi.2
|- C e. CC
comraddi.3
|- A = ( B + C )
Assertion comraddi
|- A = ( C + B )

Proof

Step Hyp Ref Expression
1 comraddi.1
 |-  B e. CC
2 comraddi.2
 |-  C e. CC
3 comraddi.3
 |-  A = ( B + C )
4 1 2 addcomi
 |-  ( B + C ) = ( C + B )
5 3 4 eqtri
 |-  A = ( C + B )