Metamath Proof Explorer


Theorem conntop

Description: A connected topology is a topology. (Contributed by FL, 22-Dec-2008) (Revised by Mario Carneiro, 14-Dec-2013)

Ref Expression
Assertion conntop ( 𝐽 ∈ Conn → 𝐽 ∈ Top )

Proof

Step Hyp Ref Expression
1 eqid 𝐽 = 𝐽
2 1 isconn ( 𝐽 ∈ Conn ↔ ( 𝐽 ∈ Top ∧ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝐽 } ) )
3 2 simplbi ( 𝐽 ∈ Conn → 𝐽 ∈ Top )