| Step |
Hyp |
Ref |
Expression |
| 1 |
|
picn |
⊢ π ∈ ℂ |
| 2 |
|
cos2t |
⊢ ( π ∈ ℂ → ( cos ‘ ( 2 · π ) ) = ( ( 2 · ( ( cos ‘ π ) ↑ 2 ) ) − 1 ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( cos ‘ ( 2 · π ) ) = ( ( 2 · ( ( cos ‘ π ) ↑ 2 ) ) − 1 ) |
| 4 |
|
cospi |
⊢ ( cos ‘ π ) = - 1 |
| 5 |
4
|
oveq1i |
⊢ ( ( cos ‘ π ) ↑ 2 ) = ( - 1 ↑ 2 ) |
| 6 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 7 |
|
sqneg |
⊢ ( 1 ∈ ℂ → ( - 1 ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( - 1 ↑ 2 ) = ( 1 ↑ 2 ) |
| 9 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 10 |
5 8 9
|
3eqtri |
⊢ ( ( cos ‘ π ) ↑ 2 ) = 1 |
| 11 |
10
|
oveq2i |
⊢ ( 2 · ( ( cos ‘ π ) ↑ 2 ) ) = ( 2 · 1 ) |
| 12 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 13 |
11 12
|
eqtri |
⊢ ( 2 · ( ( cos ‘ π ) ↑ 2 ) ) = 2 |
| 14 |
13
|
oveq1i |
⊢ ( ( 2 · ( ( cos ‘ π ) ↑ 2 ) ) − 1 ) = ( 2 − 1 ) |
| 15 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 16 |
3 14 15
|
3eqtri |
⊢ ( cos ‘ ( 2 · π ) ) = 1 |