| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resincl |
⊢ ( 𝐴 ∈ ℝ → ( sin ‘ 𝐴 ) ∈ ℝ ) |
| 2 |
1
|
sqge0d |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( ( sin ‘ 𝐴 ) ↑ 2 ) ) |
| 3 |
|
recoscl |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ ) |
| 4 |
3
|
resqcld |
⊢ ( 𝐴 ∈ ℝ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 5 |
1
|
resqcld |
⊢ ( 𝐴 ∈ ℝ → ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 6 |
4 5
|
addge02d |
⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ ( ( sin ‘ 𝐴 ) ↑ 2 ) ↔ ( ( cos ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 7 |
2 6
|
mpbid |
⊢ ( 𝐴 ∈ ℝ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ≤ ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
| 8 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 9 |
|
sincossq |
⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 10 |
8 9
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 11 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 12 |
10 11
|
eqtr4di |
⊢ ( 𝐴 ∈ ℝ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( 1 ↑ 2 ) ) |
| 13 |
7 12
|
breqtrd |
⊢ ( 𝐴 ∈ ℝ → ( ( cos ‘ 𝐴 ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
| 14 |
|
1re |
⊢ 1 ∈ ℝ |
| 15 |
|
0le1 |
⊢ 0 ≤ 1 |
| 16 |
|
lenegsq |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1 ) → ( ( ( cos ‘ 𝐴 ) ≤ 1 ∧ - ( cos ‘ 𝐴 ) ≤ 1 ) ↔ ( ( cos ‘ 𝐴 ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) ) |
| 17 |
14 15 16
|
mp3an23 |
⊢ ( ( cos ‘ 𝐴 ) ∈ ℝ → ( ( ( cos ‘ 𝐴 ) ≤ 1 ∧ - ( cos ‘ 𝐴 ) ≤ 1 ) ↔ ( ( cos ‘ 𝐴 ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) ) |
| 18 |
|
lenegcon1 |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( - ( cos ‘ 𝐴 ) ≤ 1 ↔ - 1 ≤ ( cos ‘ 𝐴 ) ) ) |
| 19 |
14 18
|
mpan2 |
⊢ ( ( cos ‘ 𝐴 ) ∈ ℝ → ( - ( cos ‘ 𝐴 ) ≤ 1 ↔ - 1 ≤ ( cos ‘ 𝐴 ) ) ) |
| 20 |
19
|
anbi2d |
⊢ ( ( cos ‘ 𝐴 ) ∈ ℝ → ( ( ( cos ‘ 𝐴 ) ≤ 1 ∧ - ( cos ‘ 𝐴 ) ≤ 1 ) ↔ ( ( cos ‘ 𝐴 ) ≤ 1 ∧ - 1 ≤ ( cos ‘ 𝐴 ) ) ) ) |
| 21 |
17 20
|
bitr3d |
⊢ ( ( cos ‘ 𝐴 ) ∈ ℝ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ↔ ( ( cos ‘ 𝐴 ) ≤ 1 ∧ - 1 ≤ ( cos ‘ 𝐴 ) ) ) ) |
| 22 |
3 21
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ↔ ( ( cos ‘ 𝐴 ) ≤ 1 ∧ - 1 ≤ ( cos ‘ 𝐴 ) ) ) ) |
| 23 |
13 22
|
mpbid |
⊢ ( 𝐴 ∈ ℝ → ( ( cos ‘ 𝐴 ) ≤ 1 ∧ - 1 ≤ ( cos ‘ 𝐴 ) ) ) |
| 24 |
23
|
ancomd |
⊢ ( 𝐴 ∈ ℝ → ( - 1 ≤ ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) ≤ 1 ) ) |