Description: Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that x can be free in B but cannot occur in A . (Contributed by NM, 2-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | csb2 | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑦 ∈ 𝐵 ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } | |
2 | sbc5 | ⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
3 | 2 | abbii | ⊢ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑦 ∈ 𝐵 ) } |
4 | 1 3 | eqtri | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑦 ∈ 𝐵 ) } |