Description: Alternate expression for the proper substitution into a class, without referencing substitution into a wff. Note that x can be free in B but cannot occur in A . (Contributed by NM, 2-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | csb2 | |- [_ A / x ]_ B = { y | E. x ( x = A /\ y e. B ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb | |- [_ A / x ]_ B = { y | [. A / x ]. y e. B } |
|
2 | sbc5 | |- ( [. A / x ]. y e. B <-> E. x ( x = A /\ y e. B ) ) |
|
3 | 2 | abbii | |- { y | [. A / x ]. y e. B } = { y | E. x ( x = A /\ y e. B ) } |
4 | 1 3 | eqtri | |- [_ A / x ]_ B = { y | E. x ( x = A /\ y e. B ) } |