Metamath Proof Explorer


Theorem csbnegg

Description: Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion csbnegg ( 𝐴𝑉 𝐴 / 𝑥 - 𝐵 = - 𝐴 / 𝑥 𝐵 )

Proof

Step Hyp Ref Expression
1 csbov2g ( 𝐴𝑉 𝐴 / 𝑥 ( 0 − 𝐵 ) = ( 0 − 𝐴 / 𝑥 𝐵 ) )
2 df-neg - 𝐵 = ( 0 − 𝐵 )
3 2 csbeq2i 𝐴 / 𝑥 - 𝐵 = 𝐴 / 𝑥 ( 0 − 𝐵 )
4 df-neg - 𝐴 / 𝑥 𝐵 = ( 0 − 𝐴 / 𝑥 𝐵 )
5 1 3 4 3eqtr4g ( 𝐴𝑉 𝐴 / 𝑥 - 𝐵 = - 𝐴 / 𝑥 𝐵 )